Efficient Estimation of Bid-Ask Spreads from Open, High, Low, and Close Prices

David Ardia, E. Guidotti, Tim A. Kroencke
{"title":"Efficient Estimation of Bid-Ask Spreads from Open, High, Low, and Close Prices","authors":"David Ardia, E. Guidotti, Tim A. Kroencke","doi":"10.2139/ssrn.3892335","DOIUrl":null,"url":null,"abstract":"We propose a novel estimation procedure of bid-ask spreads from open, high, low, and close prices. Our estimator is asymptotically unbiased and optimally combines the full set of price data to minimize the estimation variance. When quote data are not available, our estimator generally delivers the most accurate estimates of effective bid-ask spreads numerically and empirically. The estimator is derived under permissive assumptions that allow for stylized facts typically observed in real market data, is easy to implement, and can be applied to liquid and illiquid market segments, both in low and high frequency.","PeriodicalId":260048,"journal":{"name":"Capital Markets: Market Efficiency eJournal","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Capital Markets: Market Efficiency eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3892335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a novel estimation procedure of bid-ask spreads from open, high, low, and close prices. Our estimator is asymptotically unbiased and optimally combines the full set of price data to minimize the estimation variance. When quote data are not available, our estimator generally delivers the most accurate estimates of effective bid-ask spreads numerically and empirically. The estimator is derived under permissive assumptions that allow for stylized facts typically observed in real market data, is easy to implement, and can be applied to liquid and illiquid market segments, both in low and high frequency.
有效估计买卖价差从开盘价,高点,低点和收盘价
我们提出了一种新的从开盘价、高价、低价和收盘价计算买卖价差的估计方法。我们的估计器是渐近无偏的,并最佳地结合了全套价格数据,以最小化估计方差。当报价数据不可用时,我们的估算器通常提供最准确的有效买卖价差的数值和经验估计。估计器是在允许的假设下推导出来的,这些假设允许在真实市场数据中观察到的典型的程式化事实,易于实现,并且可以应用于低频率和高频率的流动性和非流动性细分市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信