{"title":"A novel method for protecting sensitive knowledge in association rules mining","authors":"En Tzu Wang, Guanling Lee, Yuh-Tzu Lin","doi":"10.1109/COMPSAC.2005.27","DOIUrl":null,"url":null,"abstract":"Discovering frequent patterns from huge amounts of data is one of the most studied problems in data mining. However, some sensitive patterns with security policies may cause a threat to privacy. We investigate to find an appropriate balance between a need for privacy and information discovery on frequent patterns. By multiplying the original database and a sanitization matrix together, a sanitized database with privacy concerns is obtained. Additionally, a probability policy is proposed to against the recovery of sensitive patterns and reduces the modifications of the sanitized database. A set of experiments is also performed to show the benefit of our work.","PeriodicalId":419267,"journal":{"name":"29th Annual International Computer Software and Applications Conference (COMPSAC'05)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th Annual International Computer Software and Applications Conference (COMPSAC'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC.2005.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
Discovering frequent patterns from huge amounts of data is one of the most studied problems in data mining. However, some sensitive patterns with security policies may cause a threat to privacy. We investigate to find an appropriate balance between a need for privacy and information discovery on frequent patterns. By multiplying the original database and a sanitization matrix together, a sanitized database with privacy concerns is obtained. Additionally, a probability policy is proposed to against the recovery of sensitive patterns and reduces the modifications of the sanitized database. A set of experiments is also performed to show the benefit of our work.