Feng Su, Wenjun Ding, Lan Wang, Susu Shan, Hailiang Xu
{"title":"Text Proposals Based on Windowed Maximally Stable Extremal Region for Scene Text Detection","authors":"Feng Su, Wenjun Ding, Lan Wang, Susu Shan, Hailiang Xu","doi":"10.1109/ICDAR.2017.69","DOIUrl":null,"url":null,"abstract":"The generation of text proposals (i.e. local candidate regions most likely containing textual components) is one critical and prerequisite step in scene text detection task. As one popular text proposal algorithm, the Maximally Stable Extremal Region (MSER), has been exploited by many successful text detection methods, while on the other hand has difficulties in handling complicated scene text involving touching characters and characters composed of multiple unconnected parts (e.g. Chinese characters and text in dot matrix fonts). In this paper, we propose a novel text proposal method for localizing text in natural images, which integrates the MSER algorithm with the multi-scale sliding window framework and efficiently extracts Windowed Maximally Stable Extremal Regions (WMSERs) as text proposals. We further present effective proposal filtering and grouping algorithms for exploiting WMSER-based proposals in text detection task. Experiments on public scene text datasets demonstrate the promising aspects of the proposed method in dealing with complicated scene text.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The generation of text proposals (i.e. local candidate regions most likely containing textual components) is one critical and prerequisite step in scene text detection task. As one popular text proposal algorithm, the Maximally Stable Extremal Region (MSER), has been exploited by many successful text detection methods, while on the other hand has difficulties in handling complicated scene text involving touching characters and characters composed of multiple unconnected parts (e.g. Chinese characters and text in dot matrix fonts). In this paper, we propose a novel text proposal method for localizing text in natural images, which integrates the MSER algorithm with the multi-scale sliding window framework and efficiently extracts Windowed Maximally Stable Extremal Regions (WMSERs) as text proposals. We further present effective proposal filtering and grouping algorithms for exploiting WMSER-based proposals in text detection task. Experiments on public scene text datasets demonstrate the promising aspects of the proposed method in dealing with complicated scene text.