Multi-view face detector using a single cascade classifier

Qiaoliang Li, Zhewei Chen, Ping Liang, Li-Ming Deng, Jinliang Zhong, Xinyu Liu, S. Qi, Huisheng Zhang, Tianfu Wang
{"title":"Multi-view face detector using a single cascade classifier","authors":"Qiaoliang Li, Zhewei Chen, Ping Liang, Li-Ming Deng, Jinliang Zhong, Xinyu Liu, S. Qi, Huisheng Zhang, Tianfu Wang","doi":"10.1109/SKIMA.2016.7916267","DOIUrl":null,"url":null,"abstract":"In this work, a cascade classifier is trained to detect multi-view face samples. Comparing with most of face detection system which use different classifier to classify frontal face and profile face, our system has advantage in detection speed. The proposed face detector extracts the Haar-like feature from the training samples and train a cascade classifier by using Adaboost learing algorithm. Different from the existing algorithms, our detection system only contains a cascade classifier model. Our preliminary experiments demonstrate that our cascade classifier can achieve similiar accuracy and 60% higher speed detection than the multi-view face detection system which consist of two sparate cascade classifiers.","PeriodicalId":417370,"journal":{"name":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA.2016.7916267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, a cascade classifier is trained to detect multi-view face samples. Comparing with most of face detection system which use different classifier to classify frontal face and profile face, our system has advantage in detection speed. The proposed face detector extracts the Haar-like feature from the training samples and train a cascade classifier by using Adaboost learing algorithm. Different from the existing algorithms, our detection system only contains a cascade classifier model. Our preliminary experiments demonstrate that our cascade classifier can achieve similiar accuracy and 60% higher speed detection than the multi-view face detection system which consist of two sparate cascade classifiers.
使用单级联分类器的多视图人脸检测器
在这项工作中,训练了一个级联分类器来检测多视图人脸样本。与大多数人脸检测系统使用不同的分类器对正面人脸和侧面人脸进行分类相比,本系统在检测速度上具有优势。该人脸检测器利用Adaboost学习算法从训练样本中提取haar样特征,并训练出级联分类器。与现有算法不同,我们的检测系统只包含一个级联分类器模型。我们的初步实验表明,与由两个独立的级联分类器组成的多视图人脸检测系统相比,我们的级联分类器可以达到相似的精度,并且检测速度提高60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信