Multivariate Time-Series Prediction Using LSTM Neural Networks

R. Ghanbari, K. Borna
{"title":"Multivariate Time-Series Prediction Using LSTM Neural Networks","authors":"R. Ghanbari, K. Borna","doi":"10.1109/CSICC52343.2021.9420543","DOIUrl":null,"url":null,"abstract":"In this paper, we analyzed different models of LSTM neural networks on the multi-step time-series dataset. The purpose of this study is to express a clear and precise method using LSTM neural networks for sequence datasets. These models can be used in other similar datasets, and the models are composed to be developed for various multi-step datasets with the slightest adjustment required. The principal purpose and question of this study were whether it is possible to provide a model to predict the amount of electricity consumed by a house over the next seven days. Using the specified models, we have made a prediction based on the dataset. We also made a comprehensive comparison with all the results obtained from the methods among different models. In this study, the dataset is household electricity consumption data gathered over four years. We have been able to achieve the desired prediction results with the least amount of error among the existing state-of-the-art models.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we analyzed different models of LSTM neural networks on the multi-step time-series dataset. The purpose of this study is to express a clear and precise method using LSTM neural networks for sequence datasets. These models can be used in other similar datasets, and the models are composed to be developed for various multi-step datasets with the slightest adjustment required. The principal purpose and question of this study were whether it is possible to provide a model to predict the amount of electricity consumed by a house over the next seven days. Using the specified models, we have made a prediction based on the dataset. We also made a comprehensive comparison with all the results obtained from the methods among different models. In this study, the dataset is household electricity consumption data gathered over four years. We have been able to achieve the desired prediction results with the least amount of error among the existing state-of-the-art models.
基于LSTM神经网络的多元时间序列预测
本文对LSTM神经网络在多步时间序列数据集上的不同模型进行了分析。本研究的目的是利用LSTM神经网络对序列数据集表达一种清晰、精确的方法。这些模型可以用于其他类似的数据集,并且这些模型可以用于各种多步数据集,只需要最轻微的调整。这项研究的主要目的和问题是,是否有可能提供一个模型来预测一个房子在未来七天内消耗的电量。利用指定的模型,对数据集进行了预测。在不同的模型中,我们还对所有方法得到的结果进行了综合比较。在这项研究中,数据集是四年来收集的家庭用电量数据。我们已经能够在现有的最先进的模型中以最小的误差达到预期的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信