{"title":"Spectral Asymptotics for the Semiclassical Dirichlet to Neumann Operator","authors":"Andrew Hassell, V. Ivrii","doi":"10.4171/JST/180","DOIUrl":null,"url":null,"abstract":"Let $M$ be a compact Riemannian manifold with smooth boundary, and let $R(\\lambda)$ be the Dirichlet-to-Neumann operator at frequency $\\lambda$. We obtain a leading asymptotic for the spectral counting function for $\\lambda^{-1}R(\\lambda)$ in an interval $[a_1, a_2)$ as $\\lambda \\to \\infty$, under the assumption that the measure of periodic billiards on $T^*M$ is zero. The asymptotic takes the form \\begin{equation*} N(\\lambda; a_1,a_2) = \\bigl(\\kappa(a_2)-\\kappa(a_1)\\bigr)\\mathsf{vol}'(\\partial M) \\lambda^{d-1}+o(\\lambda^{d-1}), \\end{equation*} where $\\kappa(a)$ is given explicitly by \\begin{equation*} \\kappa(a) = \\frac{\\omega_{d-1}}{(2\\pi)^{d-1}} \\biggl( -\\frac{1}{2\\pi} \\int_{-1}^1 (1 - \\eta^2)^{(d-1)/2} \\frac{a}{a^2 + \\eta^2} \\, d\\eta - \\frac{1}{4} + H(a) (1+a^2)^{(d-1)/2} \\biggr) \\end{equation*} with the Heavyside function $H(a)$.","PeriodicalId":310753,"journal":{"name":"Microlocal Analysis, Sharp Spectral Asymptotics and Applications V","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microlocal Analysis, Sharp Spectral Asymptotics and Applications V","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JST/180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Let $M$ be a compact Riemannian manifold with smooth boundary, and let $R(\lambda)$ be the Dirichlet-to-Neumann operator at frequency $\lambda$. We obtain a leading asymptotic for the spectral counting function for $\lambda^{-1}R(\lambda)$ in an interval $[a_1, a_2)$ as $\lambda \to \infty$, under the assumption that the measure of periodic billiards on $T^*M$ is zero. The asymptotic takes the form \begin{equation*} N(\lambda; a_1,a_2) = \bigl(\kappa(a_2)-\kappa(a_1)\bigr)\mathsf{vol}'(\partial M) \lambda^{d-1}+o(\lambda^{d-1}), \end{equation*} where $\kappa(a)$ is given explicitly by \begin{equation*} \kappa(a) = \frac{\omega_{d-1}}{(2\pi)^{d-1}} \biggl( -\frac{1}{2\pi} \int_{-1}^1 (1 - \eta^2)^{(d-1)/2} \frac{a}{a^2 + \eta^2} \, d\eta - \frac{1}{4} + H(a) (1+a^2)^{(d-1)/2} \biggr) \end{equation*} with the Heavyside function $H(a)$.