Design issues on CMOS space-variant image sensors

F. Pardo, J. Boluda, J. J. Perez, B. Dierickx, D. Scheffer
{"title":"Design issues on CMOS space-variant image sensors","authors":"F. Pardo, J. Boluda, J. J. Perez, B. Dierickx, D. Scheffer","doi":"10.1117/12.262514","DOIUrl":null,"url":null,"abstract":"A new image sensor, using CMOS technology, has been designed and fabricated. The pixel distribution of this sensor follows a log-polar mapping, thus the pixel concentration is maximum at the center reducing the number of pixels towards the periphery, having a resolution of 56 rings with 128 pixels per ring. The design of this kind of sensors has special issues regarding the space-variant nature of the pixel distribution. The main topic is the different pixel size that requires scaling mechanisms to achieve the same output independently of the pixel size. This paper presents some study results on the scaling mechanisms of this kind of sensors. A mechanism for current scaling is presented. This mechanism has been studied along with the logarithmic response of these special kind of sensing cells. The chip has been fabricated using standard 0.7 micrometer CMOS technology.","PeriodicalId":127521,"journal":{"name":"Advanced Imaging and Network Technologies","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Imaging and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.262514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A new image sensor, using CMOS technology, has been designed and fabricated. The pixel distribution of this sensor follows a log-polar mapping, thus the pixel concentration is maximum at the center reducing the number of pixels towards the periphery, having a resolution of 56 rings with 128 pixels per ring. The design of this kind of sensors has special issues regarding the space-variant nature of the pixel distribution. The main topic is the different pixel size that requires scaling mechanisms to achieve the same output independently of the pixel size. This paper presents some study results on the scaling mechanisms of this kind of sensors. A mechanism for current scaling is presented. This mechanism has been studied along with the logarithmic response of these special kind of sensing cells. The chip has been fabricated using standard 0.7 micrometer CMOS technology.
CMOS空间变型图像传感器的设计问题
采用CMOS技术,设计并制作了一种新型图像传感器。该传感器的像素分布遵循对数极映射,因此像素浓度在中心最大,减少了向外围的像素数量,分辨率为56环,每环128像素。这类传感器的设计有一个特殊的问题,那就是像素分布的空间变异性。主要主题是不同的像素大小,需要缩放机制来实现独立于像素大小的相同输出。本文介绍了该类传感器标度机理的一些研究成果。提出了一种电流缩放机制。这一机制已经与这些特殊类型的传感细胞的对数响应一起进行了研究。该芯片采用标准的0.7微米CMOS技术制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信