Optimum/Sub-Optimum Detection for Multi-Branch Cooperative Diversity Networks with Limited CSI

Peng Liu, Il Kim
{"title":"Optimum/Sub-Optimum Detection for Multi-Branch Cooperative Diversity Networks with Limited CSI","authors":"Peng Liu, Il Kim","doi":"10.1109/GLOCOM.2009.5425456","DOIUrl":null,"url":null,"abstract":"We study the optimum maximum-likelihood (ML) detection and sub-optimum detection with limited channel state information (CSI) for a multi-branch dual-hop cooperative diversity network which consists of a source, multiple relays, and a destination without a direct source-destination path. With the limited CSI, the signalling overhead at each relay is reduced by 50%. We first derive the optimum ML detection with the limited CSI, which involves numerical integral evaluations. To reduce the computational complexity, we then propose a closed-form suboptimum detection rule. It is demonstrated that the proposed sub-optimum detection rule performs almost identically to the optimum ML detection when the non-Gaussianity in the added noise component dominates.","PeriodicalId":405624,"journal":{"name":"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2009.5425456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the optimum maximum-likelihood (ML) detection and sub-optimum detection with limited channel state information (CSI) for a multi-branch dual-hop cooperative diversity network which consists of a source, multiple relays, and a destination without a direct source-destination path. With the limited CSI, the signalling overhead at each relay is reduced by 50%. We first derive the optimum ML detection with the limited CSI, which involves numerical integral evaluations. To reduce the computational complexity, we then propose a closed-form suboptimum detection rule. It is demonstrated that the proposed sub-optimum detection rule performs almost identically to the optimum ML detection when the non-Gaussianity in the added noise component dominates.
有限CSI下多分支合作分集网络的最优/次最优检测
研究了由一个源、多个中继和一个无直接源-目的路径的目标组成的多分支双跳合作分集网络的最优最大似然(ML)检测和有限信道状态信息(CSI)的次优检测。在有限的CSI下,每个继电器的信令开销减少了50%。我们首先在有限的CSI下推导出最优的ML检测,这涉及到数值积分计算。为了降低计算复杂度,我们提出了一种封闭的次优检测规则。结果表明,当添加噪声分量的非高斯性占主导地位时,所提出的次优检测规则与最优ML检测规则几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信