Query Expansion as a Matrix Factorization Problem: Extended Abstract

Daniel Valcarce, Javier Parapar, Álvaro Barreiro
{"title":"Query Expansion as a Matrix Factorization Problem: Extended Abstract","authors":"Daniel Valcarce, Javier Parapar, Álvaro Barreiro","doi":"10.1145/3230599.3230603","DOIUrl":null,"url":null,"abstract":"Pseudo-relevance feedback (PRF) provides an automatic method for query expansion in Information Retrieval. These techniques find relevant expansion terms using the top retrieved documents with the original query. In this paper, we present an approach based on linear methods called LiMe that formulates the PRF task as a matrix factorization problem. LiMe learns an inter-term similarity matrix from the pseudo-relevant set and the query that uses for computing expansion terms. The experiments on five datasets show that LiMe outperforms state-of-the-art baselines in most cases.","PeriodicalId":448209,"journal":{"name":"Proceedings of the 5th Spanish Conference on Information Retrieval","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Spanish Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230599.3230603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pseudo-relevance feedback (PRF) provides an automatic method for query expansion in Information Retrieval. These techniques find relevant expansion terms using the top retrieved documents with the original query. In this paper, we present an approach based on linear methods called LiMe that formulates the PRF task as a matrix factorization problem. LiMe learns an inter-term similarity matrix from the pseudo-relevant set and the query that uses for computing expansion terms. The experiments on five datasets show that LiMe outperforms state-of-the-art baselines in most cases.
查询展开作为矩阵分解问题:扩展摘要
伪相关反馈(PRF)为信息检索提供了一种自动扩展查询的方法。这些技术使用带有原始查询的顶部检索文档来查找相关的扩展术语。在本文中,我们提出了一种基于线性方法LiMe的方法,该方法将PRF任务表述为矩阵分解问题。LiMe从伪相关集和用于计算展开项的查询中学习项间相似性矩阵。在五个数据集上的实验表明,LiMe在大多数情况下优于最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信