{"title":"Fair decentralized data-rate congestion control for V2V communications","authors":"C. B. Math, Hong Li, S. Groot, I. Niemegeers","doi":"10.1109/ICT.2017.7998229","DOIUrl":null,"url":null,"abstract":"Channel congestion is one of the most critical issues in IEEE 802.11p-based vehicular ad hoc networks because congestion may lead to unreliability of applications. As a counter measure, the European Telecommunications Standard Institute (ETSI), proposes a mandatory Decentralized Congestion Control (DCC) framework to control the channel load. DCC algorithms are proposed to tune parameters such as message-rate, data-rate, etc. to avoid congestion. An important requirement for DCC algorithms is fairness, which ensures that vehicles experiencing similar channel loads are entitled to similar transmission parameters, in particular, message-rate and data-rate. Message-rate DCC (LIMERIC) ensures a fair message-rate selection, while data-rate DCC (DR-DCC) might end up with different data-rates, creating unfairness among the vehicles: vehicles with lower data-rate have a larger communication range than those using higher data-rates. Therefore some vehicles are less visible than others, which is detrimental to the reliability of the safety applications. To avoid this, the paper defines a novel packet-count based decentralized data-rate congestion control algorithm (PDR-DCC), which enforces fairness and hence improves the application-reliability. Simulation studies are performed to demonstrate that PDR-DCC avoids congestion in a fair manner. We also show the effect of fairness on the application-reliability by comparing the performance of PDR-DCC with message-rate (LIMERIC) and data-rate (DR-DCC) congestion control algorithms for a stationary vehicle warning application in a synthetic highway scenario and for various vehicular densities. We conclude that PDR-DCC outperforms LIMERIC, and DR-DCC in terms of application-reliability.","PeriodicalId":120403,"journal":{"name":"2017 24th International Conference on Telecommunications (ICT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 24th International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2017.7998229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Channel congestion is one of the most critical issues in IEEE 802.11p-based vehicular ad hoc networks because congestion may lead to unreliability of applications. As a counter measure, the European Telecommunications Standard Institute (ETSI), proposes a mandatory Decentralized Congestion Control (DCC) framework to control the channel load. DCC algorithms are proposed to tune parameters such as message-rate, data-rate, etc. to avoid congestion. An important requirement for DCC algorithms is fairness, which ensures that vehicles experiencing similar channel loads are entitled to similar transmission parameters, in particular, message-rate and data-rate. Message-rate DCC (LIMERIC) ensures a fair message-rate selection, while data-rate DCC (DR-DCC) might end up with different data-rates, creating unfairness among the vehicles: vehicles with lower data-rate have a larger communication range than those using higher data-rates. Therefore some vehicles are less visible than others, which is detrimental to the reliability of the safety applications. To avoid this, the paper defines a novel packet-count based decentralized data-rate congestion control algorithm (PDR-DCC), which enforces fairness and hence improves the application-reliability. Simulation studies are performed to demonstrate that PDR-DCC avoids congestion in a fair manner. We also show the effect of fairness on the application-reliability by comparing the performance of PDR-DCC with message-rate (LIMERIC) and data-rate (DR-DCC) congestion control algorithms for a stationary vehicle warning application in a synthetic highway scenario and for various vehicular densities. We conclude that PDR-DCC outperforms LIMERIC, and DR-DCC in terms of application-reliability.