Pulse discrete cosine transform for saliency-based visual attention

Ying-jia Yu, Bin Wang, Liming Zhang
{"title":"Pulse discrete cosine transform for saliency-based visual attention","authors":"Ying-jia Yu, Bin Wang, Liming Zhang","doi":"10.1109/DEVLRN.2009.5175512","DOIUrl":null,"url":null,"abstract":"This paper proposes a saliency-based attention model based on pulsed cosine transform that simulates the lateral surround inhibition of neurons with similar visual features. The model can be extended to Hebbian-based neural networks. The visual saliency can be represented in binary codes, which agrees with the firing pulse of neurons in human brain. In addition, motion saliency can be directly generated by these pulse codes. Due to its good performance in eye fixation prediction and low computational complexity, our model can be used in real-time system such as robot navigation, virtual human system, and intelligent auto-focus system embedded in digital camera.","PeriodicalId":192225,"journal":{"name":"2009 IEEE 8th International Conference on Development and Learning","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 8th International Conference on Development and Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2009.5175512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

This paper proposes a saliency-based attention model based on pulsed cosine transform that simulates the lateral surround inhibition of neurons with similar visual features. The model can be extended to Hebbian-based neural networks. The visual saliency can be represented in binary codes, which agrees with the firing pulse of neurons in human brain. In addition, motion saliency can be directly generated by these pulse codes. Due to its good performance in eye fixation prediction and low computational complexity, our model can be used in real-time system such as robot navigation, virtual human system, and intelligent auto-focus system embedded in digital camera.
基于显著性视觉注意的脉冲离散余弦变换
本文提出了一种基于脉冲余弦变换的显著性注意模型,该模型模拟了具有相似视觉特征的神经元的横向环绕抑制。该模型可以推广到基于hebbian的神经网络。视觉显著性可以用二进制编码表示,这与人脑神经元的放电脉冲一致。此外,这些脉冲码可以直接产生运动显著性。该模型具有良好的眼注视预测性能和较低的计算复杂度,可用于机器人导航、虚拟人系统、数码相机智能自动对焦等实时系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信