Evolutionary design of oscillatory genetic networks in silico

Yuki Naruse, Hiroyuki Hamada, T. Hanai, H. Iba
{"title":"Evolutionary design of oscillatory genetic networks in silico","authors":"Yuki Naruse, Hiroyuki Hamada, T. Hanai, H. Iba","doi":"10.1109/CEC.2015.7257078","DOIUrl":null,"url":null,"abstract":"The design of genetic networks has been studied for implementing desired biological systems, and in particular, some researchers have proposed automatic design methods using optimization techniques. However, it is difficult to implement genetic networks designed by previous methods due to overly simplified model descriptions whose parameters are infeasible in the real world. Additionally, the methods do not ensure robustness against parameter perturbation. In this paper, we propose a two-stage design method and a fitness function evaluating robustness to create genetic networks which can be implemented experimentally. Further, we suggest the knowledge about robust network structures from results of optimization.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The design of genetic networks has been studied for implementing desired biological systems, and in particular, some researchers have proposed automatic design methods using optimization techniques. However, it is difficult to implement genetic networks designed by previous methods due to overly simplified model descriptions whose parameters are infeasible in the real world. Additionally, the methods do not ensure robustness against parameter perturbation. In this paper, we propose a two-stage design method and a fitness function evaluating robustness to create genetic networks which can be implemented experimentally. Further, we suggest the knowledge about robust network structures from results of optimization.
振荡遗传网络的进化设计
遗传网络的设计已经被研究用于实现期望的生物系统,特别是一些研究人员提出了使用优化技术的自动设计方法。然而,以往方法设计的遗传网络由于模型描述过于简化,其参数在现实世界中是不可行的,难以实现。此外,这些方法不能保证对参数扰动的鲁棒性。在本文中,我们提出了一种两阶段设计方法和适应度函数评估鲁棒性来创建可以实验实现的遗传网络。此外,我们建议从优化结果中获得关于鲁棒网络结构的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信