Heretic: Modeling Anthony Braxton's Language Music

Hunter M. Brown, M. Casey
{"title":"Heretic: Modeling Anthony Braxton's Language Music","authors":"Hunter M. Brown, M. Casey","doi":"10.1109/MMRP.2019.8665363","DOIUrl":null,"url":null,"abstract":"This article presents a new system for real-time machine listening within human-machine free improvisation. Heretic uses Anthony Braxton's Language Music system as a grammatical model for contextualizing real-time audio feature data within free improvisation. Heretic hears, recognizes, and organizes unseen musical material from a human improviser into a fluid, coherent, and expressive musical language. Systems similar to Heretic often prioritize agnostic approaches to machine listening by avoiding prior musical knowledge in the system's training stage. However, prominent improvisers such as Cecil Taylor, Ornette Coleman, Joe Morris, and Anthony Braxton detail their approaches to improvisation as languages or grammatical systems. These improvisers contextualize the real-time musical materials of their band-mates by applying their formulated grammatical systems to their decision-making processes. Taylor, Coleman, Morris, and Braxton's autonomy and musical creativity are not compromised by using grammatical systems. In regards to human-machine improvisation, Heretic demonstrates that a grammatical approach to machine listening can yield idiosyncratic interactions, full machine autonomy, and novel musical output. This article details a re-imagining of Anthony Braxton's Language Music within the context of machine listening, and an implementation of Language Music within Heretic via SuperCollider's audio feature extraction functionality and Wekinator's multi-layer perceptron neural networks.","PeriodicalId":441469,"journal":{"name":"2019 International Workshop on Multilayer Music Representation and Processing (MMRP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Workshop on Multilayer Music Representation and Processing (MMRP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMRP.2019.8665363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article presents a new system for real-time machine listening within human-machine free improvisation. Heretic uses Anthony Braxton's Language Music system as a grammatical model for contextualizing real-time audio feature data within free improvisation. Heretic hears, recognizes, and organizes unseen musical material from a human improviser into a fluid, coherent, and expressive musical language. Systems similar to Heretic often prioritize agnostic approaches to machine listening by avoiding prior musical knowledge in the system's training stage. However, prominent improvisers such as Cecil Taylor, Ornette Coleman, Joe Morris, and Anthony Braxton detail their approaches to improvisation as languages or grammatical systems. These improvisers contextualize the real-time musical materials of their band-mates by applying their formulated grammatical systems to their decision-making processes. Taylor, Coleman, Morris, and Braxton's autonomy and musical creativity are not compromised by using grammatical systems. In regards to human-machine improvisation, Heretic demonstrates that a grammatical approach to machine listening can yield idiosyncratic interactions, full machine autonomy, and novel musical output. This article details a re-imagining of Anthony Braxton's Language Music within the context of machine listening, and an implementation of Language Music within Heretic via SuperCollider's audio feature extraction functionality and Wekinator's multi-layer perceptron neural networks.
异端:模仿安东尼·布拉克斯顿的语言音乐
本文提出了一种人机自由即兴的实时机器监听系统。hertic使用Anthony Braxton的语言音乐系统作为语法模型,将实时音频特征数据置于自由即兴创作的语境中。异端者从人类即兴演奏者那里听到、识别并组织看不见的音乐材料,使之成为一种流畅、连贯和富有表现力的音乐语言。类似于Heretic的系统通常会通过在系统的训练阶段避免先验的音乐知识来优先考虑机器聆听的不可知论方法。然而,像塞西尔·泰勒、奥奈特·科尔曼、乔·莫里斯和安东尼·布拉克斯顿这样杰出的即兴演奏者将他们的即兴演奏方法详细描述为语言或语法系统。这些即兴演奏者将他们乐队成员的实时音乐材料语境化,将他们制定的语法系统应用于他们的决策过程。泰勒、科尔曼、莫里斯和布拉克斯顿的自主性和音乐创造力并没有因为使用语法系统而受到损害。在人机即兴演奏方面,异端证明了机器聆听的语法方法可以产生特殊的交互,完全的机器自主性和新颖的音乐输出。本文详细介绍了Anthony Braxton的语言音乐在机器聆听环境中的重新想象,以及通过SuperCollider的音频特征提取功能和Wekinator的多层感知器神经网络在Heretic中实现的语言音乐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信