Bayesian multivariate Poisson model for RNA-seq classification

J. Knight, I. Ivanov, E. Dougherty
{"title":"Bayesian multivariate Poisson model for RNA-seq classification","authors":"J. Knight, I. Ivanov, E. Dougherty","doi":"10.1109/GENSIPS.2013.6735946","DOIUrl":null,"url":null,"abstract":"High dimensional data and small samples make genomic/proteomic classifier design and error estimation virtually impossible without the use of prior information [1]. Dalton and Dougherty utilize prior biological knowledge via a Bayesian approach that considers a prior distribution on an uncertainty class of feature-label distributions [2], [3]. While their general framework is very broad, the focus their attention on multinomial and Gaussian models, for which they derive closed-form solutions of the minimum mean squared error (MMSE) error estimate, the MSE of the error estimate, and an optimal Bayesian classifier (OBC) classifier relative to the prior distribution. Sequencing datasets consist of the number of reads found to map to specific regions of a reference genome. As such, they are often modeled with a discrete distribution, such as the Poisson. For this reason, Gaussian and multinomial distributions are not ideal for sequence-based datasets. Thus, we introduce a multivariate Poisson model (MP) and the associated MP OBC for classifying samples using sequencing data. Lacking closed-form solutions, we employ a Monte Carlo Markov Chain (MCMC) approach to perform classification. We demonstrate superior classification performance for more complex synthetic datasets and comparable performance to the top classifiers in other simpler synthetic datasets.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High dimensional data and small samples make genomic/proteomic classifier design and error estimation virtually impossible without the use of prior information [1]. Dalton and Dougherty utilize prior biological knowledge via a Bayesian approach that considers a prior distribution on an uncertainty class of feature-label distributions [2], [3]. While their general framework is very broad, the focus their attention on multinomial and Gaussian models, for which they derive closed-form solutions of the minimum mean squared error (MMSE) error estimate, the MSE of the error estimate, and an optimal Bayesian classifier (OBC) classifier relative to the prior distribution. Sequencing datasets consist of the number of reads found to map to specific regions of a reference genome. As such, they are often modeled with a discrete distribution, such as the Poisson. For this reason, Gaussian and multinomial distributions are not ideal for sequence-based datasets. Thus, we introduce a multivariate Poisson model (MP) and the associated MP OBC for classifying samples using sequencing data. Lacking closed-form solutions, we employ a Monte Carlo Markov Chain (MCMC) approach to perform classification. We demonstrate superior classification performance for more complex synthetic datasets and comparable performance to the top classifiers in other simpler synthetic datasets.
RNA-seq分类的贝叶斯多元泊松模型
高维数据和小样本使得基因组/蛋白质组学分类器的设计和误差估计几乎不可能不使用先验信息[1]。Dalton和Dougherty通过贝叶斯方法利用先验生物学知识,该方法考虑了特征标签分布的不确定性类的先验分布[2],[3]。虽然他们的总体框架非常广泛,但他们将注意力集中在多项和高斯模型上,为此他们推导了最小均方误差(MMSE)误差估计的封闭形式解,误差估计的MSE,以及相对于先验分布的最优贝叶斯分类器(OBC)分类器。测序数据集由发现的与参考基因组的特定区域相对应的读数组成。因此,它们通常用离散分布建模,如泊松分布。由于这个原因,高斯分布和多项分布对于基于序列的数据集来说不是理想的。因此,我们引入了一个多变量泊松模型(MP)和相关的MP OBC,用于使用测序数据对样本进行分类。由于缺乏封闭形式的解,我们采用蒙特卡洛马尔可夫链(MCMC)方法进行分类。我们在更复杂的合成数据集上展示了卓越的分类性能,并在其他更简单的合成数据集上展示了与顶级分类器相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信