Distributed-Memory Algorithms for Maximal Cardinality Matching Using Matrix Algebra

A. Azad, A. Buluç
{"title":"Distributed-Memory Algorithms for Maximal Cardinality Matching Using Matrix Algebra","authors":"A. Azad, A. Buluç","doi":"10.1109/CLUSTER.2015.62","DOIUrl":null,"url":null,"abstract":"We design and implement distributed-memory parallel algorithms for computing maximal cardinality matching in a bipartite graph. Relying on matrix algebra building blocks, our algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. In contrast to existing parallel algorithms, empirical approximation ratios of the new algorithms are insensitive to concurrency and stay relatively constant with increasing processor counts. On real instances, our algorithms achieve up to 300x speedup on 1024 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 processors.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"65 38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We design and implement distributed-memory parallel algorithms for computing maximal cardinality matching in a bipartite graph. Relying on matrix algebra building blocks, our algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. In contrast to existing parallel algorithms, empirical approximation ratios of the new algorithms are insensitive to concurrency and stay relatively constant with increasing processor counts. On real instances, our algorithms achieve up to 300x speedup on 1024 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 processors.
基于矩阵代数的最大基数匹配分布式存储算法
我们设计并实现了计算二部图中最大基数匹配的分布式内存并行算法。依靠矩阵代数构建块,我们的算法在分布式内存平台上比现有的基于图的算法暴露出更高程度的并行性。与现有的并行算法相比,新算法的经验逼近比对并发性不敏感,并且随着处理器数量的增加保持相对恒定。在实际实例中,我们的算法在一台Cray XC30超级计算机的1024核上实现了高达300倍的加速。在更大的合成生成图上获得更高的速度,我们的算法在最多16,384个处理器上显示出良好的可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信