Finding faces in photographs

A. Rajagopalan, K. S. Kumar, J. Karlekar, R. Manivasakan, M. Patil, U. Desai, P. G. Poonacha, S. Chaudhuri
{"title":"Finding faces in photographs","authors":"A. Rajagopalan, K. S. Kumar, J. Karlekar, R. Manivasakan, M. Patil, U. Desai, P. G. Poonacha, S. Chaudhuri","doi":"10.1109/ICCV.1998.710785","DOIUrl":null,"url":null,"abstract":"Two new schemes are presented for finding human faces in a photograph. The first scheme approximates the unknown distributions of the face and the face-like manifolds wing higher order statistics (HOS). An HOS-based data clustering algorithm is also proposed. In the second scheme, the face to non-face and non-face to face transitions are learnt using a hidden Markov model (HMM). The HMM parameters are estimated corresponding to a given photograph and the faces are located by examining the optimal state sequence of the HMM. Experimental results are presented on the performance of both the schemes.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

Abstract

Two new schemes are presented for finding human faces in a photograph. The first scheme approximates the unknown distributions of the face and the face-like manifolds wing higher order statistics (HOS). An HOS-based data clustering algorithm is also proposed. In the second scheme, the face to non-face and non-face to face transitions are learnt using a hidden Markov model (HMM). The HMM parameters are estimated corresponding to a given photograph and the faces are located by examining the optimal state sequence of the HMM. Experimental results are presented on the performance of both the schemes.
在照片中寻找人脸
提出了两种新的人脸识别方法。第一种方案近似于面和类面流形的高阶统计量的未知分布。提出了一种基于hos的数据聚类算法。在第二种方案中,使用隐马尔可夫模型(HMM)学习人脸到非人脸和非人脸到人脸的转换。根据给定的图像估计HMM参数,并通过检测HMM的最优状态序列来定位人脸。实验结果表明了两种方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信