On Proposal Functions for Cost-Reference Particle Filtering

M. Bugallo, M. Vemula, P. Djuric
{"title":"On Proposal Functions for Cost-Reference Particle Filtering","authors":"M. Bugallo, M. Vemula, P. Djuric","doi":"10.1109/SAM.2006.1706181","DOIUrl":null,"url":null,"abstract":"Standard particle filtering (SPF) schemes rely on the availability of probability distributions of the state and observation noises involved in the dynamic state space model. Cost reference particle filtering (CRPF) techniques have proven to be a viable and robust alternative in situations when the probability distributions of these noise processes are unknown. In this paper, we propose two new CRPF methods which use different proposal functions from the one of the original CRPF method. The proposed algorithms are applied to target tracking in a wireless sensor network. The performance of the proposed methods is demonstrated by computer simulations","PeriodicalId":272327,"journal":{"name":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2006.1706181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Standard particle filtering (SPF) schemes rely on the availability of probability distributions of the state and observation noises involved in the dynamic state space model. Cost reference particle filtering (CRPF) techniques have proven to be a viable and robust alternative in situations when the probability distributions of these noise processes are unknown. In this paper, we propose two new CRPF methods which use different proposal functions from the one of the original CRPF method. The proposed algorithms are applied to target tracking in a wireless sensor network. The performance of the proposed methods is demonstrated by computer simulations
代价-参考粒子滤波的建议函数
标准粒子滤波(SPF)方案依赖于动态空间模型中状态和观测噪声的概率分布的可用性。当这些噪声过程的概率分布未知时,成本参考粒子滤波(CRPF)技术已被证明是一种可行且鲁棒的替代方案。在本文中,我们提出了两种新的CRPF方法,它们使用不同于原CRPF方法的提议函数。将所提出的算法应用于无线传感器网络中的目标跟踪。计算机仿真验证了所提方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信