Dependence of blowup rate of large solutions of semilinear elliptic equations, on the curvature of the boundary

C. Bandle, M. Marcus
{"title":"Dependence of blowup rate of large solutions of semilinear elliptic equations, on the curvature of the boundary","authors":"C. Bandle, M. Marcus","doi":"10.1080/02781070410001731729","DOIUrl":null,"url":null,"abstract":"Let D be a smooth bounded domain in . Let f be a positive monotone increasing function on which satisfies the Keller–Osserman condition. It is well-known that the solutions of Δ u=f(u), which blow up at the boundary behave, to a first order approximation, like a function of dist(x,∂ D). In this paper we show that the second order approximation depends on the mean curvature of ∂ D. This paper is an extension of results in [4] which dealt with radially symmetric solutions. It extends also the results in [5] for f = tp .","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070410001731729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Let D be a smooth bounded domain in . Let f be a positive monotone increasing function on which satisfies the Keller–Osserman condition. It is well-known that the solutions of Δ u=f(u), which blow up at the boundary behave, to a first order approximation, like a function of dist(x,∂ D). In this paper we show that the second order approximation depends on the mean curvature of ∂ D. This paper is an extension of results in [4] which dealt with radially symmetric solutions. It extends also the results in [5] for f = tp .
半线性椭圆方程大解爆破率与边界曲率的关系
设D是一个光滑有界域。设f为满足Keller-Osserman条件的正单调递增函数。众所周知,Δ u=f(u)的解在边界处爆发,表现为一阶近似,就像dist(x,∂D)的函数。在本文中,我们证明了二阶近似取决于∂D的平均曲率。本文是[4]中处理径向对称解的结果的扩展。它还扩展了[5]中f = tp的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信