{"title":"Privacy-preserving smart metering","authors":"A. Rial, G. Danezis","doi":"10.1145/2046556.2046564","DOIUrl":null,"url":null,"abstract":"Smart grid proposals threaten user privacy by potentially disclosing fine-grained consumption data to utility providers, primarily for time-of-use billing, but also for profiling, settlement, forecasting, tariff and energy efficiency advice. We propose a privacy-preserving protocol for general calculations on fine-grained meter readings, while keeping the use of tamper evident meters to a strict minimum. We allow users to perform and prove the correctness of computations based on readings on their own devices, without disclosing any fine grained consumption. Applying the protocols to time-of-use billing is particularly simple and efficient, but we also support a wider variety of tariff policies. Cryptographic proofs and multiple implementations are used to show the proposed protocols are secure and efficient.","PeriodicalId":384270,"journal":{"name":"Proceedings of the 10th annual ACM workshop on Privacy in the electronic society","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"372","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th annual ACM workshop on Privacy in the electronic society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046556.2046564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 372
Abstract
Smart grid proposals threaten user privacy by potentially disclosing fine-grained consumption data to utility providers, primarily for time-of-use billing, but also for profiling, settlement, forecasting, tariff and energy efficiency advice. We propose a privacy-preserving protocol for general calculations on fine-grained meter readings, while keeping the use of tamper evident meters to a strict minimum. We allow users to perform and prove the correctness of computations based on readings on their own devices, without disclosing any fine grained consumption. Applying the protocols to time-of-use billing is particularly simple and efficient, but we also support a wider variety of tariff policies. Cryptographic proofs and multiple implementations are used to show the proposed protocols are secure and efficient.