Battery identification based on real-world data

Miao Zhang, Zhixin Miao, Lingling Fan
{"title":"Battery identification based on real-world data","authors":"Miao Zhang, Zhixin Miao, Lingling Fan","doi":"10.1109/NAPS.2017.8107387","DOIUrl":null,"url":null,"abstract":"In this paper, system identification is carried out for a 20 kWh battery using real-world measurements data. State-of-charge (SOC) and the open-circuit voltage (Voc) relationship will be obtained using least square estimation (LSE) non-linear regression. In addition, how to estimate SOC using current measurements and how to estimate the equivalent circuit's RC parameters are carried out using autoregressive exogenous (ARX) models. The respective ARX models are first derived. Estimation of the ARX coefficients is then carried out. Finally, parameter recovery is conducted to find out parameters with physical meanings, e.g., RC values. With the identified Voc and SOC relationship and RC parameters, we built a simulation model in MATLAB/Simpowersystems. With the measured current data from the real-world as the input, the simulation model gives the terminal DC voltage as the output. This output is compared with the real-world DC voltage measurements data and the matching degree is satisfactory.","PeriodicalId":296428,"journal":{"name":"2017 North American Power Symposium (NAPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2017.8107387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, system identification is carried out for a 20 kWh battery using real-world measurements data. State-of-charge (SOC) and the open-circuit voltage (Voc) relationship will be obtained using least square estimation (LSE) non-linear regression. In addition, how to estimate SOC using current measurements and how to estimate the equivalent circuit's RC parameters are carried out using autoregressive exogenous (ARX) models. The respective ARX models are first derived. Estimation of the ARX coefficients is then carried out. Finally, parameter recovery is conducted to find out parameters with physical meanings, e.g., RC values. With the identified Voc and SOC relationship and RC parameters, we built a simulation model in MATLAB/Simpowersystems. With the measured current data from the real-world as the input, the simulation model gives the terminal DC voltage as the output. This output is compared with the real-world DC voltage measurements data and the matching degree is satisfactory.
基于真实数据的电池识别
在本文中,使用实际测量数据对20千瓦时电池进行了系统识别。利用最小二乘估计(LSE)的非线性回归,得到电池的荷电状态(SOC)和开路电压(Voc)关系。此外,如何使用电流测量来估计SOC以及如何使用自回归外生(ARX)模型来估计等效电路的RC参数。首先推导了相应的ARX模型。然后进行ARX系数的估计。最后进行参数恢复,找出具有物理意义的参数,如RC值。根据确定的Voc和SOC关系以及RC参数,在MATLAB/Simpowersystems中建立了仿真模型。仿真模型以现实世界的实测电流数据作为输入,给出终端直流电压作为输出。该输出与实际直流电压测量数据进行了比较,匹配程度令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信