Pekka Siirtola, Riitta Pyky, Riikka Ahola, Heli Koskimäki, T. Jämsä, R. Korpelainen, J. Röning
{"title":"Detecting and profiling sedentary young men using machine learning algorithms","authors":"Pekka Siirtola, Riitta Pyky, Riikka Ahola, Heli Koskimäki, T. Jämsä, R. Korpelainen, J. Röning","doi":"10.1109/CIDM.2014.7008681","DOIUrl":null,"url":null,"abstract":"Many governments and institutions have guidelines for health-enhancing physical activity. Additionally, according to recent studies, the amount of time spent on sitting is a highly important determinant of health and wellbeing. In fact, sedentary lifestyle can lead to many diseases and, what is more, it is even found to be associated with increased mortality. In this study, a data set consisting of self-reported questionnaire, medical diagnoses and fitness tests was studied to detect sedentary young men from a large population and to create a profile of a sedentary person. The data set was collected from 595 young men and contained altogether 678 features. Most of these are answers to multi-choice close-ended questions. More precisely, features were mostly integers with a scale from 1 to 5 or from 1 to 2, and therefore, there was only a little variability in the values of features. In order to detect and profile a sedentary young man, machine learning algorithms were applied to the data set. The performance of five algorithms is compared (quadratic discriminant analysis (QDA), linear discriminant analysis (LDA), C4.5, random forests, and nearest neighbours (kNN)) to find the most accurate algorithm. The results of this study show that when the aim is to detect a sedentary person based on medical records and fitness tests, LDA performs better than the other algorithms, but still the accuracy is not high. In the second part of the study the differences between highly sedentary and non-sedentary young men are searched, recognition can be obtained with high accuracy with each algorithm.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Many governments and institutions have guidelines for health-enhancing physical activity. Additionally, according to recent studies, the amount of time spent on sitting is a highly important determinant of health and wellbeing. In fact, sedentary lifestyle can lead to many diseases and, what is more, it is even found to be associated with increased mortality. In this study, a data set consisting of self-reported questionnaire, medical diagnoses and fitness tests was studied to detect sedentary young men from a large population and to create a profile of a sedentary person. The data set was collected from 595 young men and contained altogether 678 features. Most of these are answers to multi-choice close-ended questions. More precisely, features were mostly integers with a scale from 1 to 5 or from 1 to 2, and therefore, there was only a little variability in the values of features. In order to detect and profile a sedentary young man, machine learning algorithms were applied to the data set. The performance of five algorithms is compared (quadratic discriminant analysis (QDA), linear discriminant analysis (LDA), C4.5, random forests, and nearest neighbours (kNN)) to find the most accurate algorithm. The results of this study show that when the aim is to detect a sedentary person based on medical records and fitness tests, LDA performs better than the other algorithms, but still the accuracy is not high. In the second part of the study the differences between highly sedentary and non-sedentary young men are searched, recognition can be obtained with high accuracy with each algorithm.