T. Khoshgoftaar, A. Folleco, J. V. Hulse, Lofton A. Bullard
{"title":"Software Quality Imputation in the Presence of Noisy Data","authors":"T. Khoshgoftaar, A. Folleco, J. V. Hulse, Lofton A. Bullard","doi":"10.1109/IRI.2006.252462","DOIUrl":null,"url":null,"abstract":"The detrimental effects of noise in a dependent variable on the accuracy of software quality imputation techniques were studied. The imputation techniques used in this work were Bayesian multiple imputation, mean imputation, instance-based learning, regression imputation, and the REPTree decision tree. These techniques were used to obtain software quality imputations for a large military command, control, and communications system dataset (CCCS). The underlying quality of data was a significant factor affecting the accuracy of the imputation techniques. Multiple imputation and regression imputation were top performers, while mean imputation was ineffective","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The detrimental effects of noise in a dependent variable on the accuracy of software quality imputation techniques were studied. The imputation techniques used in this work were Bayesian multiple imputation, mean imputation, instance-based learning, regression imputation, and the REPTree decision tree. These techniques were used to obtain software quality imputations for a large military command, control, and communications system dataset (CCCS). The underlying quality of data was a significant factor affecting the accuracy of the imputation techniques. Multiple imputation and regression imputation were top performers, while mean imputation was ineffective