Fast k-NN Graph Construction by GPU based NN-Descent

Hui Wang, Wanlei Zhao, Xiangxiang Zeng, Jianye Yang
{"title":"Fast k-NN Graph Construction by GPU based NN-Descent","authors":"Hui Wang, Wanlei Zhao, Xiangxiang Zeng, Jianye Yang","doi":"10.1145/3459637.3482344","DOIUrl":null,"url":null,"abstract":"NN-Descent is a classic k-NN graph construction approach. It is still widely employed in machine learning, computer vision, and information retrieval tasks due to its efficiency and genericness. However, the current design only works well on CPU. In this paper, NN-Descent has been redesigned to adapt to the GPU architecture. A new graph update strategy called selective update is proposed. It reduces the data exchange between GPU cores and GPU global memory significantly, which is the processing bottleneck under GPU computation architecture. This redesign leads to full exploitation of the parallelism of the GPU hardware. In the meantime, the genericness, as well as the simplicity of NN-Descent, are well-preserved. Moreover, a procedure that allows to k-NN graph to be merged efficiently on GPU is proposed. It makes the construction of high-quality k-NN graphs for out-of-GPU-memory datasets tractable. Our approach is 100-250× faster than the single-thread NN-Descent and is 2.5-5× faster than the existing GPU-based approaches as we tested on million as well as billion scale datasets.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

NN-Descent is a classic k-NN graph construction approach. It is still widely employed in machine learning, computer vision, and information retrieval tasks due to its efficiency and genericness. However, the current design only works well on CPU. In this paper, NN-Descent has been redesigned to adapt to the GPU architecture. A new graph update strategy called selective update is proposed. It reduces the data exchange between GPU cores and GPU global memory significantly, which is the processing bottleneck under GPU computation architecture. This redesign leads to full exploitation of the parallelism of the GPU hardware. In the meantime, the genericness, as well as the simplicity of NN-Descent, are well-preserved. Moreover, a procedure that allows to k-NN graph to be merged efficiently on GPU is proposed. It makes the construction of high-quality k-NN graphs for out-of-GPU-memory datasets tractable. Our approach is 100-250× faster than the single-thread NN-Descent and is 2.5-5× faster than the existing GPU-based approaches as we tested on million as well as billion scale datasets.
基于GPU的快速k-NN图构建
nn下降是一种经典的k-NN图构造方法。由于它的高效性和通用性,在机器学习、计算机视觉和信息检索任务中仍被广泛应用。然而,目前的设计只适用于CPU。本文对NN-Descent进行了重新设计,以适应GPU架构。提出了一种新的图更新策略——选择性更新。它显著减少了GPU内核与GPU全局内存之间的数据交换,这是GPU计算架构下的处理瓶颈。这种重新设计可以充分利用GPU硬件的并行性。同时,保留了神经网络下降法的通用性和简洁性。此外,还提出了一种在GPU上对k-NN图进行有效合并的方法。它使得构建高质量的k-NN图的gpu内存外的数据集易于处理。我们的方法比单线程NN-Descent快100-250倍,比现有的基于gpu的方法快2.5-5倍,我们在百万和十亿规模的数据集上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信