A multiple BAM for hetero-association and multisensory integration modelling

E. Reynaud, H. Paugam-Moisy
{"title":"A multiple BAM for hetero-association and multisensory integration modelling","authors":"E. Reynaud, H. Paugam-Moisy","doi":"10.1109/IJCNN.2005.1556227","DOIUrl":null,"url":null,"abstract":"We present in this article a dynamic neural network that works as a memory for multiple associations. Heterogeneous pairs of patterns can be tied together through learning within this memory, and recalled easily. Starting from Kosko's bidirectional associative memory, we modify some fundamental features of the network (topology and learning algorithm). We show empirically that this network has a high storage capacity and is only weakly dependent upon learning hyperparameters. We demonstrate its robustness to corrupted or missing data. We finally present results from experiments where this network is used as a multisensory associative memory.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present in this article a dynamic neural network that works as a memory for multiple associations. Heterogeneous pairs of patterns can be tied together through learning within this memory, and recalled easily. Starting from Kosko's bidirectional associative memory, we modify some fundamental features of the network (topology and learning algorithm). We show empirically that this network has a high storage capacity and is only weakly dependent upon learning hyperparameters. We demonstrate its robustness to corrupted or missing data. We finally present results from experiments where this network is used as a multisensory associative memory.
多元BAM用于异联想和多感觉整合建模
在这篇文章中,我们提出了一个动态神经网络,它可以作为多个联想的记忆。在这种记忆中,不同的模式对可以通过学习联系在一起,并且很容易被回忆起来。从Kosko的双向联想记忆开始,我们修改了网络的一些基本特征(拓扑和学习算法)。我们的经验表明,该网络具有高存储容量,并且仅弱依赖于学习超参数。我们证明了它对损坏或丢失数据的鲁棒性。我们最后展示了这个网络被用作多感觉联想记忆的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信