{"title":"Mongolian Traditional Stamp Recognition using Scalable kNN","authors":"P. Gantuya., B. Mungunshagai, B. Suvdaa","doi":"10.7236/IJASC.2015.4.2.170","DOIUrl":null,"url":null,"abstract":"The stamp is one of the crucial information of traditional historical and cultural for nations. In this paper, we purpose to detect official stamps from scanned document and recognize the Mongolian traditional, historical stamps. Therefore we performed following steps: first, we detect official stamps from scanned document based on red-color segmentation and document standard. Then we collected 234 traditional stamp images with 6 classes and 100 official stamp images from scanned document images. Also we implemented the processing algorithms for noise removing, resize and reshape etc. Finally, we proposed a new scale invariant classification algorithm based on KNN (k-nearest neighbor). In the experimental result, our proposed a method had shown proper recognition rate.","PeriodicalId":297506,"journal":{"name":"The International Journal of Advanced Smart Convergence","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Advanced Smart Convergence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/IJASC.2015.4.2.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The stamp is one of the crucial information of traditional historical and cultural for nations. In this paper, we purpose to detect official stamps from scanned document and recognize the Mongolian traditional, historical stamps. Therefore we performed following steps: first, we detect official stamps from scanned document based on red-color segmentation and document standard. Then we collected 234 traditional stamp images with 6 classes and 100 official stamp images from scanned document images. Also we implemented the processing algorithms for noise removing, resize and reshape etc. Finally, we proposed a new scale invariant classification algorithm based on KNN (k-nearest neighbor). In the experimental result, our proposed a method had shown proper recognition rate.