Segre's theorem on ovals in Desarguesian projective planes

P. Browne, S. Dougherty, Padraig 'O Cath'ain
{"title":"Segre's theorem on ovals in Desarguesian projective planes","authors":"P. Browne, S. Dougherty, Padraig 'O Cath'ain","doi":"10.33232/bims.0091.37.47","DOIUrl":null,"url":null,"abstract":"Segre's theorem on ovals in projective spaces is an ingenious result from the mid-twentieth century which requires surprisingly little background to prove. This note, suitable for undergraduates with experience of linear and abstract algebra, provides a complete and self-contained proof. All necessary pre-requisites, principally evaluation of homogeneous polynomials at projective points and Desargues' theorem are presented in full. While following the broad outline of Segre's proof, careful parameterisation of certain tangent lines results in shorter and simpler computations than the original.","PeriodicalId":103198,"journal":{"name":"Irish Mathematical Society Bulletin","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irish Mathematical Society Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33232/bims.0091.37.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Segre's theorem on ovals in projective spaces is an ingenious result from the mid-twentieth century which requires surprisingly little background to prove. This note, suitable for undergraduates with experience of linear and abstract algebra, provides a complete and self-contained proof. All necessary pre-requisites, principally evaluation of homogeneous polynomials at projective points and Desargues' theorem are presented in full. While following the broad outline of Segre's proof, careful parameterisation of certain tangent lines results in shorter and simpler computations than the original.
德格鲁投影平面上椭圆的Segre定理
Segre关于投影空间中椭圆的定理是20世纪中期的一个巧妙的结果,它只需要很少的背景知识就可以证明。这说明,适合本科生线性和抽象代数的经验,提供了一个完整的和自成一体的证明。所有必要的先决条件,主要是齐次多项式在射影点的评价和des辩称定理的完整。在遵循Segre证明的大致轮廓的同时,对某些切线进行仔细的参数化,结果比原来的计算更短、更简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信