Impulse noise removal on an embedded, low memory SIMD processor

Jong-Myon Kim, Soojung Ryu, A. Gentile, L. Wills, D. S. Wills
{"title":"Impulse noise removal on an embedded, low memory SIMD processor","authors":"Jong-Myon Kim, Soojung Ryu, A. Gentile, L. Wills, D. S. Wills","doi":"10.1109/ICDSP.2002.1028321","DOIUrl":null,"url":null,"abstract":"Vector median filters efficiently reduce noise while preserving image details. However, their high computational complexity for color images makes them impractical for real-time systems. We propose new computationally efficient filtering algorithms, called index mapping filters (IMF). These filtering algorithms are accelerated by implementing them on a massively data parallel processor array. In addition to greater computational efficiency, these algorithms result in robust noise reduction of corrupted color images. Analyses of mean square error, signal-to-noise-ratio, and visual comparison metrics indicate that IMF are competitive with the vector median filter (VMF) in their ability to correct impulse noise in color images. These algorithms are implemented on a SIMD processor array being developed for high efficiency, high-performance portable products. Executing on a 4096 node SIMD chip operating at 50 MHz, IMF 3/spl times/3 window applied to a 256/spl times/256 color image would take 442 microseconds (22104 clock cycles) for index mapping distance filter (IMDF) and 408 microseconds (20415 clock cycles) for index mapping median filter (IMMF).","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Vector median filters efficiently reduce noise while preserving image details. However, their high computational complexity for color images makes them impractical for real-time systems. We propose new computationally efficient filtering algorithms, called index mapping filters (IMF). These filtering algorithms are accelerated by implementing them on a massively data parallel processor array. In addition to greater computational efficiency, these algorithms result in robust noise reduction of corrupted color images. Analyses of mean square error, signal-to-noise-ratio, and visual comparison metrics indicate that IMF are competitive with the vector median filter (VMF) in their ability to correct impulse noise in color images. These algorithms are implemented on a SIMD processor array being developed for high efficiency, high-performance portable products. Executing on a 4096 node SIMD chip operating at 50 MHz, IMF 3/spl times/3 window applied to a 256/spl times/256 color image would take 442 microseconds (22104 clock cycles) for index mapping distance filter (IMDF) and 408 microseconds (20415 clock cycles) for index mapping median filter (IMMF).
嵌入式低内存SIMD处理器的脉冲噪声去除
矢量中值滤波器在保留图像细节的同时有效地降低了噪声。然而,它们对彩色图像的高计算复杂性使得它们在实时系统中不切实际。我们提出了新的计算效率高的过滤算法,称为索引映射过滤器(IMF)。这些滤波算法通过在大规模数据并行处理器阵列上实现而得到加速。除了更高的计算效率外,这些算法还可以对损坏的彩色图像进行鲁棒的降噪。对均方误差、信噪比和视觉比较指标的分析表明,IMF在校正彩色图像中的脉冲噪声方面与矢量中值滤波器(VMF)具有竞争力。这些算法是在SIMD处理器阵列上实现的,该处理器阵列是为高效率、高性能的便携式产品而开发的。在50mhz工作的4096节点SIMD芯片上执行,将IMF 3/spl times/3窗口应用于256/spl times/256彩色图像,索引映射距离滤波器(IMDF)需要442微秒(22104时钟周期),索引映射中值滤波器(IMMF)需要408微秒(20415时钟周期)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信