Iterative learning control for networked nonlinear systems using latest information

D. Shen, Yun Xu
{"title":"Iterative learning control for networked nonlinear systems using latest information","authors":"D. Shen, Yun Xu","doi":"10.1109/CHICC.2015.7260114","DOIUrl":null,"url":null,"abstract":"The iterative learning control (ILC) algorithm is constructed for networked nonlinear systems with random measurement losses modeled by a stochastic sequence. The algorithm updates regularly when the corresponding measurement is available, while updates with the latest available packet from previous iterations if the corresponding one is lost. The almost sure convergence is strictly proved, and illustrative simulations verify the effectiveness of the proposed algorithm.","PeriodicalId":421276,"journal":{"name":"2015 34th Chinese Control Conference (CCC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 34th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2015.7260114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The iterative learning control (ILC) algorithm is constructed for networked nonlinear systems with random measurement losses modeled by a stochastic sequence. The algorithm updates regularly when the corresponding measurement is available, while updates with the latest available packet from previous iterations if the corresponding one is lost. The almost sure convergence is strictly proved, and illustrative simulations verify the effectiveness of the proposed algorithm.
基于最新信息的网络非线性系统迭代学习控制
针对测量损失为随机序列的非线性网络系统,构造了迭代学习控制算法。当相应的测量值可用时,算法定期更新,如果相应的数据包丢失,则使用以前迭代中最新的可用数据包进行更新。严格证明了算法的收敛性,并通过实例仿真验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信