JL Lemma Based Dimensionality Reduction: On Using CDS Based Partial Fourier Matrices

Snigdha Tariyal, N. Narendra, M. Chandra
{"title":"JL Lemma Based Dimensionality Reduction: On Using CDS Based Partial Fourier Matrices","authors":"Snigdha Tariyal, N. Narendra, M. Chandra","doi":"10.1109/HiPCW.2015.9","DOIUrl":null,"url":null,"abstract":"In the Big Data regime, Dimensionality Reduction (DR) has a fundamental role towards facilitating useful analytics on the data. Quite recently, Johnson Lindenstrauss (JL) Lemma-based DR is actively researched from both theoretical and application perspectives. In this paper, we provide some preliminary results demonstrating the utility of the deterministic partial Fourier matrices with the rows picked according to an appropriate Cyclic Difference Set (CDS), for projecting the data vectors into the lower dimension. Apart from bringing out the fact that these matrices preserve the pair-wise distances among the vectors equally well as their random counterparts, results are also provided for their applicability in image classification and clustering.","PeriodicalId":203902,"journal":{"name":"2015 IEEE 22nd International Conference on High Performance Computing Workshops","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd International Conference on High Performance Computing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPCW.2015.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the Big Data regime, Dimensionality Reduction (DR) has a fundamental role towards facilitating useful analytics on the data. Quite recently, Johnson Lindenstrauss (JL) Lemma-based DR is actively researched from both theoretical and application perspectives. In this paper, we provide some preliminary results demonstrating the utility of the deterministic partial Fourier matrices with the rows picked according to an appropriate Cyclic Difference Set (CDS), for projecting the data vectors into the lower dimension. Apart from bringing out the fact that these matrices preserve the pair-wise distances among the vectors equally well as their random counterparts, results are also provided for their applicability in image classification and clustering.
基于引理的维数约简:基于CDS的部分傅立叶矩阵
在大数据机制中,降维(DR)对于促进对数据的有用分析具有重要作用。最近,Johnson Lindenstrauss (JL)基于引理的DR从理论和应用两方面都得到了积极的研究。在本文中,我们提供了一些初步的结果,证明了确定性部分傅立叶矩阵的效用,根据适当的循环差分集(CDS)选择行,将数据向量投影到较低维度。除了表明这些矩阵保持向量之间的成对距离以及它们的随机对应物的事实外,结果还提供了它们在图像分类和聚类中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信