Computationally efficient adaptive control algorithms for Markov chains

A. Jalali, M. Ferguson
{"title":"Computationally efficient adaptive control algorithms for Markov chains","authors":"A. Jalali, M. Ferguson","doi":"10.1109/CDC.1989.70344","DOIUrl":null,"url":null,"abstract":"Algorithms for adaptive control of unknown finite Markov chains are proposed. The algorithms consist of two parts: part one estimates the unknown parameters; part two computes the optimal policy. In this study the emphasis is on efficient online computation of the optimal policy. No a priori knowledge of the optimal policy is assumed. The optimal policy is computed recursively online. At each step a small amount of computation is required. At each transition of the chain, only the act corresponding to the present state of the chain is updated. The algorithms are easy to implement and converge to the optimal policy in finite time.<<ETX>>","PeriodicalId":156565,"journal":{"name":"Proceedings of the 28th IEEE Conference on Decision and Control,","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th IEEE Conference on Decision and Control,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1989.70344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Algorithms for adaptive control of unknown finite Markov chains are proposed. The algorithms consist of two parts: part one estimates the unknown parameters; part two computes the optimal policy. In this study the emphasis is on efficient online computation of the optimal policy. No a priori knowledge of the optimal policy is assumed. The optimal policy is computed recursively online. At each step a small amount of computation is required. At each transition of the chain, only the act corresponding to the present state of the chain is updated. The algorithms are easy to implement and converge to the optimal policy in finite time.<>
计算效率高的马尔可夫链自适应控制算法
提出了未知有限马尔可夫链的自适应控制算法。该算法由两部分组成:第一部分对未知参数进行估计;第二部分计算最优策略。本研究的重点是最优策略的高效在线计算。不假设最优策略的先验知识。最优策略是在线递归计算的。每一步都需要少量的计算。在链的每次转换中,只有与链的当前状态相对应的行为被更新。该算法易于实现,并在有限时间内收敛到最优策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信