{"title":"Highly reliable GaN MOS-HFET with high short-circuit capability","authors":"Y. Eum, K. Oyama, N. Otake, Shinichi Hoshi","doi":"10.23919/ISPSD.2017.7988921","DOIUrl":null,"url":null,"abstract":"A new MOS-HFET structure of a GaN power device for highly reliable GaN MOS gates has been designed. A normally-on JFET structure is fabricated between the gate and drain of the GaN MOS-HFET. By using this technology, the reliability of the gate insulator is greatly improved under the high drain voltage of the blocking-state. The new GaN MOS-HFET also reduces saturation current in the short-circuit condition by about 30%. It is expected that this new device improves the tolerance characteristics in the short-circuit condition without the on-resistance penalty associated with conventional structures.","PeriodicalId":202561,"journal":{"name":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISPSD.2017.7988921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A new MOS-HFET structure of a GaN power device for highly reliable GaN MOS gates has been designed. A normally-on JFET structure is fabricated between the gate and drain of the GaN MOS-HFET. By using this technology, the reliability of the gate insulator is greatly improved under the high drain voltage of the blocking-state. The new GaN MOS-HFET also reduces saturation current in the short-circuit condition by about 30%. It is expected that this new device improves the tolerance characteristics in the short-circuit condition without the on-resistance penalty associated with conventional structures.