{"title":"Discriminant malware distance learning on structuralinformation for automated malware classification","authors":"Deguang Kong, Guanhua Yan","doi":"10.1145/2465529.2465531","DOIUrl":null,"url":null,"abstract":"In this work, we explore techniques that can automatically classify malware variants into their corresponding families. Our framework extracts structural information from malware programs as attributed function call graphs, further learns discriminant malware distance metrics, finally adopts an ensemble of classifiers for automated malware classification. Experimental results show that our method is able to achieve high classification accuracy.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465529.2465531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120
Abstract
In this work, we explore techniques that can automatically classify malware variants into their corresponding families. Our framework extracts structural information from malware programs as attributed function call graphs, further learns discriminant malware distance metrics, finally adopts an ensemble of classifiers for automated malware classification. Experimental results show that our method is able to achieve high classification accuracy.