Can Yes-No Question-Answering Models be Useful for Few-Shot Metaphor Detection?

Lena Dankin, Kfir Bar, N. Dershowitz
{"title":"Can Yes-No Question-Answering Models be Useful for Few-Shot Metaphor Detection?","authors":"Lena Dankin, Kfir Bar, N. Dershowitz","doi":"10.18653/v1/2022.flp-1.17","DOIUrl":null,"url":null,"abstract":"Metaphor detection has been a challenging task in the NLP domain both before and after the emergence of transformer-based language models. The difficulty lies in subtle semantic nuances that are required to detect metaphor and in the scarcity of labeled data. We explore few-shot setups for metaphor detection, and also introduce new question answering data that can enhance classifiers that are trained on a small amount of data. We formulate the classification task as a question-answering one, and train a question-answering model. We perform extensive experiments for few shot on several architectures and report the results of several strong baselines. Thus, the answer to the question posed in the title is a definite “Yes!”","PeriodicalId":332745,"journal":{"name":"Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Workshop on Figurative Language Processing (FLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.flp-1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Metaphor detection has been a challenging task in the NLP domain both before and after the emergence of transformer-based language models. The difficulty lies in subtle semantic nuances that are required to detect metaphor and in the scarcity of labeled data. We explore few-shot setups for metaphor detection, and also introduce new question answering data that can enhance classifiers that are trained on a small amount of data. We formulate the classification task as a question-answering one, and train a question-answering model. We perform extensive experiments for few shot on several architectures and report the results of several strong baselines. Thus, the answer to the question posed in the title is a definite “Yes!”
是非问答模型对少量隐喻检测有用吗?
在基于变换的语言模型出现之前和之后,隐喻检测一直是NLP领域的一项具有挑战性的任务。困难在于检测隐喻所需的细微语义差别和标记数据的稀缺性。我们探索了隐喻检测的少量设置,并引入了新的问答数据,可以增强在少量数据上训练的分类器。我们将分类任务表述为一个问答任务,并训练一个问答模型。我们在几个架构上进行了大量的实验,并报告了几个强基线的结果。因此,对标题中提出的问题的答案是肯定的“是!”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信