Discovering instructions for robust binary-level coverage criteria

Vaibhav Sharma, Taejoon Byun, Stephen McCamant, Sanjai Rayadurgam, M. Heimdahl
{"title":"Discovering instructions for robust binary-level coverage criteria","authors":"Vaibhav Sharma, Taejoon Byun, Stephen McCamant, Sanjai Rayadurgam, M. Heimdahl","doi":"10.1145/3107091.3107092","DOIUrl":null,"url":null,"abstract":"Object-Branch Coverage (OBC) is often used to measure effectiveness of test suites, when source code is unavailable. The traditional OBC definition can be made more resilient to variations in compilers and the structure of generated code by creating more robust definitions. However finding which instructions should be included in each new definition is laborious, error-prone, and architecture-dependent. We automate the discovery of instructions to be included for an improved OBC definition on the X86 and ARM architectures. We discover all possible valid instructions by symbolically executing instruction decoders for X86 and ARM instructions. For each discovered instruction, we translate it to Vine IR, and check if the Vine IR translation satisfies the OBC definition. We verify the correctness of our tool by comparing its output with the X86 and ARM architecture manuals. Our automated instruction classification facilitates development of more robust OBC definitions with better bug-finding ability and lesser sensitivity to compiler variations.","PeriodicalId":298539,"journal":{"name":"Proceedings of the 1st ACM SIGSOFT International Workshop on Testing Embedded and Cyber-Physical Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSOFT International Workshop on Testing Embedded and Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107091.3107092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Object-Branch Coverage (OBC) is often used to measure effectiveness of test suites, when source code is unavailable. The traditional OBC definition can be made more resilient to variations in compilers and the structure of generated code by creating more robust definitions. However finding which instructions should be included in each new definition is laborious, error-prone, and architecture-dependent. We automate the discovery of instructions to be included for an improved OBC definition on the X86 and ARM architectures. We discover all possible valid instructions by symbolically executing instruction decoders for X86 and ARM instructions. For each discovered instruction, we translate it to Vine IR, and check if the Vine IR translation satisfies the OBC definition. We verify the correctness of our tool by comparing its output with the X86 and ARM architecture manuals. Our automated instruction classification facilitates development of more robust OBC definitions with better bug-finding ability and lesser sensitivity to compiler variations.
发现健壮的二进制级覆盖标准的指令
当源代码不可用时,对象分支覆盖率(OBC)通常用于度量测试套件的有效性。通过创建更健壮的定义,可以使传统的OBC定义更适应编译器和生成代码结构的变化。然而,找到每个新定义中应该包含哪些指令是费力的、容易出错的,并且依赖于体系结构。我们自动发现指令,包括在X86和ARM架构上改进的OBC定义。我们通过符号执行X86和ARM指令的指令解码器来发现所有可能的有效指令。对于每个发现的指令,我们将其翻译为Vine IR,并检查Vine IR翻译是否满足OBC定义。我们通过将其输出与X86和ARM架构手册进行比较来验证我们工具的正确性。我们的自动指令分类有助于开发更健壮的OBC定义,具有更好的bug查找能力,对编译器变化的敏感度更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信