Measuring HMM similarity with the Bayes probability of error and its application to online handwriting recognition

Claus Bahlmann, H. Burkhardt
{"title":"Measuring HMM similarity with the Bayes probability of error and its application to online handwriting recognition","authors":"Claus Bahlmann, H. Burkhardt","doi":"10.1109/ICDAR.2001.953822","DOIUrl":null,"url":null,"abstract":"We propose a novel similarity measure for hidden Markov models (HMMs). This measure calculates the Bayes probability of error for HMM state correspondences and propagates it along the Viterbi path in a similar way to the HMM Viterbi scoring. It can be applied as a tool to interpret misclassifications, as a stop criterion in iterative HMM training or as a distance measure for HMM clustering. The similarity measure is evaluated in the context of online handwriting recognition on lower case character models which have been trained from the UNIPEN database. We compare the similarities with experimental classifications. The results show that similar and misclassified class pairs are highly correlated. The measure is not limited to handwriting recognition, but can be used in other applications that use HMM based methods.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

We propose a novel similarity measure for hidden Markov models (HMMs). This measure calculates the Bayes probability of error for HMM state correspondences and propagates it along the Viterbi path in a similar way to the HMM Viterbi scoring. It can be applied as a tool to interpret misclassifications, as a stop criterion in iterative HMM training or as a distance measure for HMM clustering. The similarity measure is evaluated in the context of online handwriting recognition on lower case character models which have been trained from the UNIPEN database. We compare the similarities with experimental classifications. The results show that similar and misclassified class pairs are highly correlated. The measure is not limited to handwriting recognition, but can be used in other applications that use HMM based methods.
用贝叶斯误差概率度量HMM相似度及其在在线手写识别中的应用
提出了一种新的隐马尔可夫模型相似度度量方法。该度量计算HMM状态对应的Bayes误差概率,并以类似于HMM Viterbi评分的方式沿着Viterbi路径传播。它可以作为解释错误分类的工具,作为迭代HMM训练的停止准则,或者作为HMM聚类的距离度量。在在线手写识别的背景下,对从UNIPEN数据库中训练出来的小写字符模型进行相似性度量评估。我们将相似性与实验分类进行比较。结果表明,相似类对和错分类类对高度相关。该方法不仅限于手写识别,还可以用于使用基于HMM方法的其他应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信