Predictive Vector Quantized Variational AutoEncoder for Spectral Envelope Quantization

Tanasan Srikotr, K. Mano
{"title":"Predictive Vector Quantized Variational AutoEncoder for Spectral Envelope Quantization","authors":"Tanasan Srikotr, K. Mano","doi":"10.1109/ICEIC49074.2020.9051233","DOIUrl":null,"url":null,"abstract":"The Predictive Vector Quantized Variational AutoEncoder is proposed to improve the reconstruction error of the conventional VQ-VAE. The proposed model can predict the current data from the previous data. The performance of the quantized spectral envelope parameters of the high-quality 48 kHz WORLD vocoder is evaluated. The results indicate that the Predictive Vector Quantized Variational AutoEncoder has a lower distortion with four target bitrates in term of log-spectral distortion, compared with the conventional VQ-VAE.","PeriodicalId":271345,"journal":{"name":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC49074.2020.9051233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Predictive Vector Quantized Variational AutoEncoder is proposed to improve the reconstruction error of the conventional VQ-VAE. The proposed model can predict the current data from the previous data. The performance of the quantized spectral envelope parameters of the high-quality 48 kHz WORLD vocoder is evaluated. The results indicate that the Predictive Vector Quantized Variational AutoEncoder has a lower distortion with four target bitrates in term of log-spectral distortion, compared with the conventional VQ-VAE.
预测矢量量化变分自编码器的频谱包络量化
为了改善传统的VQ-VAE重构误差,提出了预测向量量化变分自编码器。该模型可以根据以前的数据预测当前的数据。对高质量48khz WORLD声码器量化谱包络参数的性能进行了评价。结果表明,与传统的VQ-VAE相比,预测矢量量化变分自编码器在4个目标比特率下具有较低的对数谱失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信