{"title":"Physical Modeling of Bitcell Stability in Subthreshold SRAMs for Leakage–Area Optimization under PVT Variations","authors":"Xin Fan, Rui Wang, T. Gemmeke","doi":"10.1145/3240765.3240836","DOIUrl":null,"url":null,"abstract":"Subthreshold SRAM design is crucial for addressing the memory bottleneck in energy constrained applications. While statistical optimization can be applied based on Monte-Carlo (MC) simulation, exploration of bitcell design space is time consuming. This paper presents a framework for model-based design and optimization of subthreshold SRAM bitcells under random PVT variations. By incorporating key design and process features, a physical model of bitcell static noise margin (SNM) has been derived analytically. It captures intra-die SNM variations by the combination of a folded-normal distribution and a non-central chi-squared distribution. Validations with MC simulation show its accuracy of modeling SNM distributions down to 25mV beyond 6-sigma for typical bitcells in 28nm. Model-based tuning of subthreshold SRAM bitcells is investigated for design tradeoff between leakage, area and stability. When targeting a specific SNM constraint, we show that an optimal standby voltage exists which offers minimum bitcell leakage power – any deviation above or below increases the power consumption. When targeting a specific standby voltage, our design flow identifies bitcell instances of 12× less leakage power or 3× reductions in area as compared to the minimum-length design.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Subthreshold SRAM design is crucial for addressing the memory bottleneck in energy constrained applications. While statistical optimization can be applied based on Monte-Carlo (MC) simulation, exploration of bitcell design space is time consuming. This paper presents a framework for model-based design and optimization of subthreshold SRAM bitcells under random PVT variations. By incorporating key design and process features, a physical model of bitcell static noise margin (SNM) has been derived analytically. It captures intra-die SNM variations by the combination of a folded-normal distribution and a non-central chi-squared distribution. Validations with MC simulation show its accuracy of modeling SNM distributions down to 25mV beyond 6-sigma for typical bitcells in 28nm. Model-based tuning of subthreshold SRAM bitcells is investigated for design tradeoff between leakage, area and stability. When targeting a specific SNM constraint, we show that an optimal standby voltage exists which offers minimum bitcell leakage power – any deviation above or below increases the power consumption. When targeting a specific standby voltage, our design flow identifies bitcell instances of 12× less leakage power or 3× reductions in area as compared to the minimum-length design.