Implementasi Metode Association Rule untuk Menganalisis Data Twitter tentang Badan Penyelenggara Jaminan Sosial dengan Algoritma Frequent Pattern-Growth

Jemaictry Tamaela, Eko Sediyono, A. Setiawan
{"title":"Implementasi Metode Association Rule untuk Menganalisis Data Twitter tentang Badan Penyelenggara Jaminan Sosial dengan Algoritma Frequent Pattern-Growth","authors":"Jemaictry Tamaela, Eko Sediyono, A. Setiawan","doi":"10.21456/VOL8ISS1PP25-33","DOIUrl":null,"url":null,"abstract":"BPJS services cannot be separated from criticism and complaints of the people in Indonesia. Twitter is one of the social media choose to share experiences related to things about BPJS. The information that is shared can be processed to gain new knowledge (knowledge discovery), which is related to public opinion about BPJS. Tweets collected from the national BJPS twitter are divided into words, then, specified words can be used as items to form the itemset. The association rule technique with the FP-Growth algorithm that is implemented in the application can process text data from Twitter to form the item set. Each item set contains a collection of tweets that are responses and the opinion of the community about an event or phenomenon related to BPJS services. The tree structure of FP-Growth simplifies the process of the validation because it can track and display the frequency of occurrence of each word and itemset, before and after branch pruning which is not included in the support value. The OSM API integration with the application in this study provides visual information about where the tweet comes from, so it can be used to generate itemset from a collection of tweets from a particular region.","PeriodicalId":123899,"journal":{"name":"Jurnal Sistem Informasi Bisnis","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sistem Informasi Bisnis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21456/VOL8ISS1PP25-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

BPJS services cannot be separated from criticism and complaints of the people in Indonesia. Twitter is one of the social media choose to share experiences related to things about BPJS. The information that is shared can be processed to gain new knowledge (knowledge discovery), which is related to public opinion about BPJS. Tweets collected from the national BJPS twitter are divided into words, then, specified words can be used as items to form the itemset. The association rule technique with the FP-Growth algorithm that is implemented in the application can process text data from Twitter to form the item set. Each item set contains a collection of tweets that are responses and the opinion of the community about an event or phenomenon related to BPJS services. The tree structure of FP-Growth simplifies the process of the validation because it can track and display the frequency of occurrence of each word and itemset, before and after branch pruning which is not included in the support value. The OSM API integration with the application in this study provides visual information about where the tweet comes from, so it can be used to generate itemset from a collection of tweets from a particular region.
BPJS的服务离不开印尼人民的批评和抱怨。Twitter是分享与BPJS相关经验的社交媒体之一。共享的信息可以被处理以获得新的知识(知识发现),这与公众对BPJS的看法有关。从全国BJPS推特中收集的推文被分成词,然后,指定的词可以作为项来组成项集。在应用程序中实现的带有FP-Growth算法的关联规则技术可以处理来自Twitter的文本数据以形成项集。每个条目集包含tweet的集合,这些tweet是社区对与BPJS服务相关的事件或现象的响应和意见。FP-Growth的树形结构简化了验证过程,因为它可以跟踪和显示每个单词和项目集在支路修剪之前和之后的出现频率,而支路修剪不包括在支持值中。本研究中与应用程序集成的OSM API提供了有关tweet来自何处的可视化信息,因此可以使用它从来自特定地区的tweet集合中生成项集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信