Recommending Tags for Pictures Based on Text, Visual Content and User Context

Stefanie N. Lindstaedt, Viktoria Pammer-Schindler, R. Mörzinger, Roman Kern, Helmut Mülner, Claudia Wagner
{"title":"Recommending Tags for Pictures Based on Text, Visual Content and User Context","authors":"Stefanie N. Lindstaedt, Viktoria Pammer-Schindler, R. Mörzinger, Roman Kern, Helmut Mülner, Claudia Wagner","doi":"10.1109/ICIW.2008.26","DOIUrl":null,"url":null,"abstract":"Imagine you are member of an online social system and want to upload a picture into the community pool. In current social software systems, you can probably tag your photo, share it or send it to a photo printing service and multiple other stuff. The system creates around you a space full of pictures, other interesting content (descriptions, comments) and full of users as well. The one thing current systems do not do, is understand what your pictures are about. We present here a collection of functionalities that make a step in that direction when put together to be consumed by a tag recommendation system for pictures. We use the data richness inherent in social online environments for recommending tags by analysing different aspects of the same data (text, visual content and user context). We also give an assessment of the quality of thus recommended tags.","PeriodicalId":139145,"journal":{"name":"2008 Third International Conference on Internet and Web Applications and Services","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Conference on Internet and Web Applications and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIW.2008.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Imagine you are member of an online social system and want to upload a picture into the community pool. In current social software systems, you can probably tag your photo, share it or send it to a photo printing service and multiple other stuff. The system creates around you a space full of pictures, other interesting content (descriptions, comments) and full of users as well. The one thing current systems do not do, is understand what your pictures are about. We present here a collection of functionalities that make a step in that direction when put together to be consumed by a tag recommendation system for pictures. We use the data richness inherent in social online environments for recommending tags by analysing different aspects of the same data (text, visual content and user context). We also give an assessment of the quality of thus recommended tags.
基于文本、视觉内容和用户上下文为图片推荐标签
假设你是一个在线社交系统的成员,想要上传一张图片到社区池。在当前的社交软件系统中,你可以标记你的照片,分享它或将它发送到照片打印服务和其他多种功能。系统会在你周围创建一个充满图片、其他有趣内容(描述、评论)和用户的空间。当前系统做不到的一件事是,理解你的图片是关于什么的。我们在这里展示了一组功能,当它们放在一起被图片的标签推荐系统使用时,它们朝着这个方向迈出了一步。我们利用社交网络环境中固有的数据丰富性,通过分析相同数据(文本、视觉内容和用户上下文)的不同方面来推荐标签。我们还对所推荐的标签的质量进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信