Job Scheduling in the presence of Multiple Resource Requirements

William Leinberger, G. Karypis, Vipin Kumar
{"title":"Job Scheduling in the presence of Multiple Resource Requirements","authors":"William Leinberger, G. Karypis, Vipin Kumar","doi":"10.1145/331532.331579","DOIUrl":null,"url":null,"abstract":"In past massively parallel processing systems, such as the Intel Paragon and the Thinking Machines CM-5, the scheduling problem consisted of allocating a single type of resource among the waiting jobs; the processing node. A job was allocated the minimum number of nodes required to meet its largest resource requirement (e.g. memory, CPUs, I/O channels, etc.). Recent systems, such as the SUN E10000 and SGI O2K, are made up of pools of independently allocatable hardware and software resources such as shared memory, large disk farms, distinct I/O channels, and software licenses. In order to make efficient use of all the available system resources, the scheduling algorithm must be able to maintain a job working set which fully utilizes all of the resources. Previous work in scheduling multiple resources focused on coordinating the allocation of CPUs and memory, using ad-hoc methods for generating good schedules. We provide new job selection heuristics based on resource balancing which support the construction of generalized K-resource scheduling algorithms. We show through simulation that performance gains of up to 50% in average response time are achievable over classical scheduling methods such as First-Come-First-Served with First-Fit backfill.","PeriodicalId":354898,"journal":{"name":"ACM/IEEE SC 1999 Conference (SC'99)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 1999 Conference (SC'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/331532.331579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

In past massively parallel processing systems, such as the Intel Paragon and the Thinking Machines CM-5, the scheduling problem consisted of allocating a single type of resource among the waiting jobs; the processing node. A job was allocated the minimum number of nodes required to meet its largest resource requirement (e.g. memory, CPUs, I/O channels, etc.). Recent systems, such as the SUN E10000 and SGI O2K, are made up of pools of independently allocatable hardware and software resources such as shared memory, large disk farms, distinct I/O channels, and software licenses. In order to make efficient use of all the available system resources, the scheduling algorithm must be able to maintain a job working set which fully utilizes all of the resources. Previous work in scheduling multiple resources focused on coordinating the allocation of CPUs and memory, using ad-hoc methods for generating good schedules. We provide new job selection heuristics based on resource balancing which support the construction of generalized K-resource scheduling algorithms. We show through simulation that performance gains of up to 50% in average response time are achievable over classical scheduling methods such as First-Come-First-Served with First-Fit backfill.
多资源需求下的作业调度
在过去的大规模并行处理系统中,如Intel Paragon和Thinking Machines CM-5,调度问题包括在等待的作业中分配单一类型的资源;处理节点。一个作业被分配了最小数量的节点以满足其最大的资源需求(例如内存、cpu、I/O通道等)。最近的系统,如SUN E10000和SGI O2K,由可独立分配的硬件和软件资源池组成,如共享内存、大型磁盘场、不同的I/O通道和软件许可证。为了有效地利用所有可用的系统资源,调度算法必须能够维持一个充分利用所有资源的作业工作集。以前在调度多资源方面的工作主要集中在协调cpu和内存的分配,使用特殊的方法来生成好的调度。提出了基于资源平衡的作业选择启发式算法,支持了广义k资源调度算法的构建。我们通过模拟表明,通过传统的调度方法,如先到先服务和先适合回填,平均响应时间的性能提高可达50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信