{"title":"A Hybrid Community-based Simulated Annealing Approach for Influence Maximization in Social Networks","authors":"T. K. Biswas, A. Abbasi, R. Chakrabortty","doi":"10.1109/IEEM45057.2020.9309848","DOIUrl":null,"url":null,"abstract":"Influence maximization (IM) in social networks aims to figure out the best subset of seed nodes which have maximum cascading influence under a diffusion model. This paper proposes a hybrid Community-based Simulated Annealing (ComSA) approach for the IM problem. A community detection algorithm is employed to segregate the entire social network structure into some more deeply clustered communities. Thereafter, a degree-based metric has been used to select the candidate pool from each community by excluding less influential nodes at the preliminary data preprocessing phase. A community-based seed initialization and neighborhood search technique have been proposed. To speed up the convergence of stable solutions in Simulated Annealing approach, a greedy hill climbing strategy is also implemented instead of using probabilistic based solution acceptance processes. Experimental results on four real-world datasets show that our proposed algorithm has comparable solution with greedy and outperforms the other existing meta-heuristic approaches.","PeriodicalId":226426,"journal":{"name":"2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM45057.2020.9309848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Influence maximization (IM) in social networks aims to figure out the best subset of seed nodes which have maximum cascading influence under a diffusion model. This paper proposes a hybrid Community-based Simulated Annealing (ComSA) approach for the IM problem. A community detection algorithm is employed to segregate the entire social network structure into some more deeply clustered communities. Thereafter, a degree-based metric has been used to select the candidate pool from each community by excluding less influential nodes at the preliminary data preprocessing phase. A community-based seed initialization and neighborhood search technique have been proposed. To speed up the convergence of stable solutions in Simulated Annealing approach, a greedy hill climbing strategy is also implemented instead of using probabilistic based solution acceptance processes. Experimental results on four real-world datasets show that our proposed algorithm has comparable solution with greedy and outperforms the other existing meta-heuristic approaches.