Machine-Learning Based DDOS Attack Classifier in Software Defined Network

A. Kyaw, May Zin Oo, C. Khin
{"title":"Machine-Learning Based DDOS Attack Classifier in Software Defined Network","authors":"A. Kyaw, May Zin Oo, C. Khin","doi":"10.1109/ecti-con49241.2020.9158230","DOIUrl":null,"url":null,"abstract":"Due to centralized control and programmable capability of the SDN architecture, network administrators can easily manage and control the whole network through the centralized controller. According to the SDN architecture, the SDN controller is vulnerable to distributed denial of service (DDOS) attacks. Thus, a failure of SDN controller is a major leak for security concern. The objectives of paper is therefore to detect the DDOS attacks and classify the normal or attack traffic in SDN network using machine learning algorithms. In this proposed system, polynomial SVM is applied to compare to existing linear SVM by using scapy, which is packet generation tool and RYU SDN controller. According to the experimental result, polynomial SVM achieves 3% better accuracy and 34% lower false alarm rate compared to Linear SVM.","PeriodicalId":371552,"journal":{"name":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecti-con49241.2020.9158230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Due to centralized control and programmable capability of the SDN architecture, network administrators can easily manage and control the whole network through the centralized controller. According to the SDN architecture, the SDN controller is vulnerable to distributed denial of service (DDOS) attacks. Thus, a failure of SDN controller is a major leak for security concern. The objectives of paper is therefore to detect the DDOS attacks and classify the normal or attack traffic in SDN network using machine learning algorithms. In this proposed system, polynomial SVM is applied to compare to existing linear SVM by using scapy, which is packet generation tool and RYU SDN controller. According to the experimental result, polynomial SVM achieves 3% better accuracy and 34% lower false alarm rate compared to Linear SVM.
基于机器学习的软件定义网络DDOS攻击分类器
由于SDN架构的集中控制和可编程能力,网络管理员可以通过集中控制器方便地管理和控制整个网络。在SDN架构下,SDN控制器容易受到DDOS (distributed denial of service)攻击。因此,SDN控制器的故障是安全问题的主要泄漏。因此,本文的目标是使用机器学习算法检测DDOS攻击并对SDN网络中的正常或攻击流量进行分类。在该系统中,利用数据包生成工具scapy和RYU SDN控制器,将多项式支持向量机与现有的线性支持向量机进行比较。实验结果表明,与线性支持向量机相比,多项式支持向量机的准确率提高3%,虚警率降低34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信