Communication efficient gaussian elimination with partial pivoting using a shape morphing data layout

Grey Ballard, J. Demmel, Benjamin Lipshitz, O. Schwartz, Sivan Toledo
{"title":"Communication efficient gaussian elimination with partial pivoting using a shape morphing data layout","authors":"Grey Ballard, J. Demmel, Benjamin Lipshitz, O. Schwartz, Sivan Toledo","doi":"10.1145/2486159.2486198","DOIUrl":null,"url":null,"abstract":"High performance for numerical linear algebra often comes at the expense of stability. Computing the LU decomposition of a matrix via Gaussian Elimination can be organized so that the computation involves regular and efficient data access. However, maintaining numerical stability via partial pivoting involves row interchanges that lead to inefficient data access patterns. To optimize communication efficiency throughout the memory hierarchy we confront two seemingly contradictory requirements: partial pivoting is efficient with column-major layout, whereas a block-recursive layout is optimal for the rest of the computation. We resolve this by introducing a shape morphing procedure that dynamically matches the layout to the computation throughout the algorithm, and show that Gaussian Elimination with partial pivoting can be performed in a communication efficient and cache-oblivious way. Our technique extends to QR decomposition, where computing Householder vectors prefers a different data layout than the rest of the computation.","PeriodicalId":353007,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486159.2486198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

High performance for numerical linear algebra often comes at the expense of stability. Computing the LU decomposition of a matrix via Gaussian Elimination can be organized so that the computation involves regular and efficient data access. However, maintaining numerical stability via partial pivoting involves row interchanges that lead to inefficient data access patterns. To optimize communication efficiency throughout the memory hierarchy we confront two seemingly contradictory requirements: partial pivoting is efficient with column-major layout, whereas a block-recursive layout is optimal for the rest of the computation. We resolve this by introducing a shape morphing procedure that dynamically matches the layout to the computation throughout the algorithm, and show that Gaussian Elimination with partial pivoting can be performed in a communication efficient and cache-oblivious way. Our technique extends to QR decomposition, where computing Householder vectors prefers a different data layout than the rest of the computation.
使用形状变形数据布局的通信高效高斯消去
数值线性代数的高性能往往是以牺牲稳定性为代价的。通过高斯消去法计算矩阵的LU分解可以组织起来,使计算涉及规则和有效的数据访问。然而,通过部分枢轴来维持数值稳定性涉及行交换,这会导致低效的数据访问模式。为了优化整个内存层次结构的通信效率,我们面临两个看似矛盾的要求:部分pivot对于列主布局是有效的,而块递归布局对于其余的计算是最佳的。我们通过引入一个形状变形过程来解决这个问题,该过程在整个算法中动态匹配布局和计算,并表明具有部分旋转的高斯消去可以以通信高效和缓存无关的方式执行。我们的技术扩展到QR分解,其中计算Householder向量比其他计算更喜欢不同的数据布局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信