Unsupervised feature extraction for hyperspectral images using combined low rank representation and locally linear embedding

Mengdi Wang, Jing Yu, Lijuan Niu, Weidong Sun
{"title":"Unsupervised feature extraction for hyperspectral images using combined low rank representation and locally linear embedding","authors":"Mengdi Wang, Jing Yu, Lijuan Niu, Weidong Sun","doi":"10.1109/ICASSP.2017.7952392","DOIUrl":null,"url":null,"abstract":"Hyperspectral images(HSIs) provide hundreds of narrow spectral bands for the land-covers, thus can provide more powerful discriminative information for the land-cover classification. However, HSIs suffer from the curse of high dimensionality, therefore dimension reduction and feature extraction are essential for the application of HSIs. In this paper, we propose an unsupervised feature extraction method for HSIs using combined low rank representation and locally linear embedding (LRR LLE). The proposed method can simultaneously use both the spectral and spatial correlation within HSIs, with LRR modelling the intrinsic property of union of low-rank subspaces and LLE considering the correlation within spatial neighbours. Experiments are conducted on real HSI datasets and the classification results demonstrate that the features extracted by LRR LLE are more discriminative than the state-of-art methods.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Hyperspectral images(HSIs) provide hundreds of narrow spectral bands for the land-covers, thus can provide more powerful discriminative information for the land-cover classification. However, HSIs suffer from the curse of high dimensionality, therefore dimension reduction and feature extraction are essential for the application of HSIs. In this paper, we propose an unsupervised feature extraction method for HSIs using combined low rank representation and locally linear embedding (LRR LLE). The proposed method can simultaneously use both the spectral and spatial correlation within HSIs, with LRR modelling the intrinsic property of union of low-rank subspaces and LLE considering the correlation within spatial neighbours. Experiments are conducted on real HSI datasets and the classification results demonstrate that the features extracted by LRR LLE are more discriminative than the state-of-art methods.
结合低秩表示和局部线性嵌入的高光谱图像无监督特征提取
高光谱影像(hsi)为地表覆盖提供了数百个狭窄的光谱波段,可以为地表覆盖分类提供更有力的判别信息。然而,hsi具有高维的缺点,因此降维和特征提取是hsi应用的关键。本文提出了一种结合低秩表示和局部线性嵌入(LRR LLE)的hsi无监督特征提取方法。该方法可以同时利用hsi内部的频谱和空间相关性,其中LRR建模了低秩子空间并的固有特性,LLE考虑了空间邻居内部的相关性。在真实的HSI数据集上进行了实验,分类结果表明,LRR - LLE提取的特征比现有方法具有更好的判别性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信