Performance analysis of PMSM drive using Artificial Neural Network technique

Deepti Yadav, Trapti Yadav, A. Verma
{"title":"Performance analysis of PMSM drive using Artificial Neural Network technique","authors":"Deepti Yadav, Trapti Yadav, A. Verma","doi":"10.1109/ETCT.2016.7882962","DOIUrl":null,"url":null,"abstract":"This paper is describing Artificial Neural Network (ANN) technique using a nonlinear speed controller design Permanent-Magnet-Synchronous-Motor (PMSM) methodology, where more emphasis is given to the tuning of the PID controller. Subsequently, speed control for PMSM was analyzed in depth using ANN techniques to enhance the performance parameters in terms of integral-gain (Ki), derivative-gain (Kd) and proportional gain (Kp). Besides this, the performance of overall-system is analyzed under different-operating scenario that includes, braking, starting, load-application and load-removal conditions. Moreover, the comparison between speed-control of PMSM with the ANN technique and speed control of PMSM using Ziegler-Nichols (Z-N) method are discussed in depth. These analyses are evaluated in-terms of static and dynamic-response. The transient-response is examined in terms of rise-time (tr), settling-time (ts), peak-time (tp), and peak-overshoot (Mp). Where, overall performance of PID speed-controller with Artificial-Neural-Network technique depicts that the proposed method is enhanced the performance under the different operating scenarios.","PeriodicalId":340007,"journal":{"name":"2016 International Conference on Emerging Trends in Communication Technologies (ETCT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Emerging Trends in Communication Technologies (ETCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCT.2016.7882962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper is describing Artificial Neural Network (ANN) technique using a nonlinear speed controller design Permanent-Magnet-Synchronous-Motor (PMSM) methodology, where more emphasis is given to the tuning of the PID controller. Subsequently, speed control for PMSM was analyzed in depth using ANN techniques to enhance the performance parameters in terms of integral-gain (Ki), derivative-gain (Kd) and proportional gain (Kp). Besides this, the performance of overall-system is analyzed under different-operating scenario that includes, braking, starting, load-application and load-removal conditions. Moreover, the comparison between speed-control of PMSM with the ANN technique and speed control of PMSM using Ziegler-Nichols (Z-N) method are discussed in depth. These analyses are evaluated in-terms of static and dynamic-response. The transient-response is examined in terms of rise-time (tr), settling-time (ts), peak-time (tp), and peak-overshoot (Mp). Where, overall performance of PID speed-controller with Artificial-Neural-Network technique depicts that the proposed method is enhanced the performance under the different operating scenarios.
基于人工神经网络技术的永磁同步电机传动性能分析
本文描述了使用非线性速度控制器设计永磁同步电机(PMSM)方法的人工神经网络(ANN)技术,其中更强调PID控制器的整定。随后,利用人工神经网络技术对永磁同步电机的速度控制进行了深入分析,以提高积分增益(Ki)、导数增益(Kd)和比例增益(Kp)的性能参数。此外,还分析了系统在不同工况下的总体性能,包括制动、启动、加载和卸载工况。此外,还对采用人工神经网络技术的永磁同步电机速度控制与采用齐格勒-尼克尔斯(Z-N)方法的永磁同步电机速度控制进行了比较。这些分析是根据静态和动态响应来评估的。瞬态响应是根据上升时间(tr)、沉降时间(ts)、峰值时间(tp)和峰值超调(Mp)来检验的。式中,采用人工神经网络技术的PID速度控制器的总体性能表明,所提方法在不同运行场景下的性能都得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信