Computing polynomial functions of correlated sources: Inner bounds

Sheng Huang, M. Skoglund
{"title":"Computing polynomial functions of correlated sources: Inner bounds","authors":"Sheng Huang, M. Skoglund","doi":"10.1109/ISIT.2012.6284664","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of source coding for computing functions of correlated i.i.d. random sources. The approach of combining standard and linear random coding for this problem was first introduced by Ahlswede and Han, in the special case of computing the modulo-two sum. In this paper, making use of an adapted version of that method, we generalize their result to more sophisticated scenarios, where the functions to be computed are polynomial functions. Since all discrete functions are fundamentally restrictions of polynomial functions, our results are universally applied.","PeriodicalId":369382,"journal":{"name":"2012 International Symposium on Information Theory and its Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2012.6284664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper considers the problem of source coding for computing functions of correlated i.i.d. random sources. The approach of combining standard and linear random coding for this problem was first introduced by Ahlswede and Han, in the special case of computing the modulo-two sum. In this paper, making use of an adapted version of that method, we generalize their result to more sophisticated scenarios, where the functions to be computed are polynomial functions. Since all discrete functions are fundamentally restrictions of polynomial functions, our results are universally applied.
计算相关源的多项式函数:内界
本文研究了相关i - id随机源计算函数的源编码问题。将标准和线性随机编码相结合的方法首先由Ahlswede和Han提出,用于计算模二和的特殊情况。在本文中,利用该方法的一个改编版本,我们将他们的结果推广到更复杂的场景,其中要计算的函数是多项式函数。因为所有的离散函数基本上都是多项式函数的限制,所以我们的结果是普遍适用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信