Uncertain semantics, representation nuisances, and necessary invariance properties of bootstrapping agents

A. Censi, R. Murray
{"title":"Uncertain semantics, representation nuisances, and necessary invariance properties of bootstrapping agents","authors":"A. Censi, R. Murray","doi":"10.1109/DEVLRN.2011.6037313","DOIUrl":null,"url":null,"abstract":"In the problem of bootstrapping, an agent must learn to use an unknown body, in an unknown world, starting from zero information about the world, its sensors, and its actuators. So far, this fascinating problem has not; been given a proper normalization. In this paper, we provide a possible rigorous definition of one of the key aspects of bootstrapping, namely the fact that an agent must be able to use “uninterpreted” observations and commands. We show that this can be formalized by positing the existence of representation nuisances that act on the data, and which must be tolerated by an agent. The classes of nuisances tolerate d in directly encode the assumptions needed about the world, and therefore the agent's ability to solve smaller or larger classes of bootstrapping problem instances. Moreover, we argue that the behavior of an agent that claims optimality must actually be invariant to the representation nuisances, and we discuss several design principles to obtain such invariance.","PeriodicalId":256921,"journal":{"name":"2011 IEEE International Conference on Development and Learning (ICDL)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2011.6037313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the problem of bootstrapping, an agent must learn to use an unknown body, in an unknown world, starting from zero information about the world, its sensors, and its actuators. So far, this fascinating problem has not; been given a proper normalization. In this paper, we provide a possible rigorous definition of one of the key aspects of bootstrapping, namely the fact that an agent must be able to use “uninterpreted” observations and commands. We show that this can be formalized by positing the existence of representation nuisances that act on the data, and which must be tolerated by an agent. The classes of nuisances tolerate d in directly encode the assumptions needed about the world, and therefore the agent's ability to solve smaller or larger classes of bootstrapping problem instances. Moreover, we argue that the behavior of an agent that claims optimality must actually be invariant to the representation nuisances, and we discuss several design principles to obtain such invariance.
不确定语义、表示干扰和自举代理的必要不变性
在自举问题中,智能体必须学会在一个未知的世界中使用一个未知的物体,从关于这个世界、它的传感器和它的致动器的零信息开始。到目前为止,这个令人着迷的问题还没有解决;得到了适当的规范化。在本文中,我们为自举的一个关键方面提供了一个可能的严格定义,即智能体必须能够使用“未解释”的观察和命令。我们表明,这可以通过假设存在作用于数据的表示干扰来形式化,并且代理必须容忍这些干扰。可容忍的滋扰类直接编码了对世界所需的假设,因此智能体解决更小或更大类别的自举问题实例的能力。此外,我们认为声称最优的智能体的行为实际上必须对表示骚扰保持不变,并且我们讨论了一些获得这种不变性的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信