Experimental Investigation of the Fault Tolerance of IDS Models

M. Murakami, N. Honda
{"title":"Experimental Investigation of the Fault Tolerance of IDS Models","authors":"M. Murakami, N. Honda","doi":"10.1109/FUZZY.2007.4295667","DOIUrl":null,"url":null,"abstract":"The ink drop spread (IDS) method is a modeling technique that is proposed as a new paradigm of soft computing. The structure of IDS models is similar to that of artificial neural networks (ANNs): they comprise distributed processing units. The beneficial property of fault tolerance is obtained when such parallel processing networks are implemented with dedicated hardware. Among the ANNs, radial basis function networks (RBFNs) are known to possess superior fault tolerance. This study evaluates the fault tolerances of the IDS models and RBFNs using the approximation of continuous functions. The experimental results demonstrate that the IDS models are highly fault tolerant in comparison with the RBFNs.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The ink drop spread (IDS) method is a modeling technique that is proposed as a new paradigm of soft computing. The structure of IDS models is similar to that of artificial neural networks (ANNs): they comprise distributed processing units. The beneficial property of fault tolerance is obtained when such parallel processing networks are implemented with dedicated hardware. Among the ANNs, radial basis function networks (RBFNs) are known to possess superior fault tolerance. This study evaluates the fault tolerances of the IDS models and RBFNs using the approximation of continuous functions. The experimental results demonstrate that the IDS models are highly fault tolerant in comparison with the RBFNs.
IDS模型容错的实验研究
墨滴扩散(IDS)方法是作为软计算新范式提出的一种建模技术。IDS模型的结构类似于人工神经网络(ann):它们由分布式处理单元组成。采用专用硬件实现这种并行处理网络,获得了良好的容错性能。在人工神经网络中,径向基函数网络(rbfn)具有较好的容错性。本文利用连续函数的近似方法对IDS模型和rbfn的容错性进行了评价。实验结果表明,与rbfn模型相比,IDS模型具有较高的容错性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信