Sopra: a new social personalized ranking function for improving web search

Mohamed Reda Bouadjenek, Hakim Hacid, M. Bouzeghoub
{"title":"Sopra: a new social personalized ranking function for improving web search","authors":"Mohamed Reda Bouadjenek, Hakim Hacid, M. Bouzeghoub","doi":"10.1145/2484028.2484131","DOIUrl":null,"url":null,"abstract":"We present in this paper a contribution to IR modeling by proposing a new ranking function called SoPRa that considers the social dimension of the Web. This social dimension is any social information that surrounds documents along with the social context of users. Currently, our approach relies on folksonomies for extracting these social contexts, but it can be extended to use any social meta-data, e.g. comments, ratings, tweets, etc. The evaluation performed on our approach shows its benefits for personalized search.","PeriodicalId":178818,"journal":{"name":"Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484028.2484131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

We present in this paper a contribution to IR modeling by proposing a new ranking function called SoPRa that considers the social dimension of the Web. This social dimension is any social information that surrounds documents along with the social context of users. Currently, our approach relies on folksonomies for extracting these social contexts, but it can be extended to use any social meta-data, e.g. comments, ratings, tweets, etc. The evaluation performed on our approach shows its benefits for personalized search.
Sopra:一个新的社会个性化排名功能,用于改善网络搜索
在本文中,我们提出了一个新的排序函数,称为SoPRa,它考虑了网络的社会维度,对IR建模做出了贡献。这个社会维度是围绕文档以及用户的社会上下文的任何社会信息。目前,我们的方法依赖于大众分类法来提取这些社会背景,但它可以扩展到使用任何社会元数据,例如评论、评级、推文等。对我们的方法进行的评估显示了它对个性化搜索的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信