URL generative recognition method based on generative countermeasure network

Zong-Rong Li, Denghui Ma, Nanfang Li, Xiang Li, Ning Zhang, H. Cao
{"title":"URL generative recognition method based on generative countermeasure network","authors":"Zong-Rong Li, Denghui Ma, Nanfang Li, Xiang Li, Ning Zhang, H. Cao","doi":"10.1117/12.2655361","DOIUrl":null,"url":null,"abstract":"The currently used URL identification methods require a large number of tags. The malicious URLs update quickly, and it is difficult to collect enough comprehensive URL tags, resulting in unstable identification accuracy. After calculating the boundary similarity of the URL string, the Skip-Gram model is used to embed the URL. The processed word vector is used as the generator input of the semi-supervised learning GAN to obtain the malicious URL identification result. The experimental results show that the accuracy of the URL recognition using GAN is higher than 96%, the fluctuation of the F1 value is small, and the recognition results are more reliable.","PeriodicalId":105577,"journal":{"name":"International Conference on Signal Processing and Communication Security","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing and Communication Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2655361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The currently used URL identification methods require a large number of tags. The malicious URLs update quickly, and it is difficult to collect enough comprehensive URL tags, resulting in unstable identification accuracy. After calculating the boundary similarity of the URL string, the Skip-Gram model is used to embed the URL. The processed word vector is used as the generator input of the semi-supervised learning GAN to obtain the malicious URL identification result. The experimental results show that the accuracy of the URL recognition using GAN is higher than 96%, the fluctuation of the F1 value is small, and the recognition results are more reliable.
基于生成对抗网络的URL生成识别方法
目前使用的URL识别方法需要大量的标签。恶意URL更新速度快,难以收集到足够全面的URL标签,导致识别精度不稳定。在计算URL字符串的边界相似度后,使用Skip-Gram模型嵌入URL。将处理后的词向量作为半监督学习GAN的生成器输入,获得恶意URL识别结果。实验结果表明,利用GAN进行URL识别的准确率高于96%,F1值波动较小,识别结果更加可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信